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Abstract

This thesis proposes an ATM congestion control mechanism that introduces a leaky
bucket control scheme based oo fuzzy logic principles. Network congestion is described
linguistically by introducing a fuzzy rule and appropriate fuzzy variables. and is treated
mathematically via fuzzy set manipulations. With the application of fuzzy logic the com-
plex mathemarical treatment of classical feedback control is avoided. and the “hard”
bound decision effect in the traditional LB is also eliminated in favor of soft” bound

membership functions.

In order to evaluate the effectiveness of the fuzzy LB, the performance of the ATM
petwork with a non-fuzzy adaptive LB mechanism is compared. Network parameters
which affect the performance are identified and optimized for the two control schemes and
a comparison of the two approaches is carried out under the same network condition and
optimal parameters. Finally. the performance of the fuzzy LB and adaptive LB arc also

evaluated under self-similar traffic loading condition.

The performance analysis in this paper is based on simulation combined with
numerical optimization methods. Our results indicate that the fuzzy leaky bucket mecha-

nism leads 1o significant improvement to the system performance.
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Chapter 1 Introduction

1.1 Background

The emergence of high-speed telecommunications technologies as revolutionized
the communications industry and has created the possibility of development the Broad-
band Integrated Services Digital Network (B-ISDN) [33]. The B-ISDN is conceived as an
all-purpose digital network, which enhances the functions of the existing networks to pro-
vide an integrated access that wiil support a variety of applications for its customers in a

fiexible and cost-cffective maaner[13][18].

The transfer mode of the broadband network, as recommended by the International
Consultative Committee for Telephone and Telegraph (CCITT) on ISDN broadband
aspects, is Asynchronous Transfer Mode (ATM)[12][27].

Unlike traditional data networks, ATM networks will be required to carry a broad
range of traffic classes ranging from bursty, variable-rate sources, such as voice and video,
to smooth, constant bit rate sources [7] [18]. Moreover, they will have to provide a guaran-
teed performance or quality of service (QoS) to many of these traffic classes. The ability to
guarantee performance is particularly important in networks for supporting real time
applications. The criteria of QoS performance is likely to vary from one application to
another, but are projected to include such measures as cell loss, delay, and delay jitter
guarantees. Therefore an ATM networks need to provide end-to-end QoS guarantees while

still taking advantage of the burstiness of the traffic via the use of statistical multiplexing.

ATM is a packet-oriented switching and multiplexing technique based on the use of

fixed length cells and is expected to offer high bit rate fiexibility and a great degree of inte-



gration, in both transmission and switching functions {20] [34]. It will not allocate fixed
channel bandwidth to individual connections. Rather, multiple logic connections will be
statistically multiplexed over the same physical link so that cach connection has access to

the full available bandwidth “on demsad™.

ATM shares much in common with conventional packet switching at lower rates, in
which the subject of mraffic and congestion control has been studied extensively and for
which several workable control techniques are known (e.g.. window control protocol).
However, most of these conventional approaches to traffic and congestion control do not
scale well to the extremely high speeds associated with ATM networks [8] [35]. An archi-
tecture for traffic and congestion control which offers simplicity, flexibility. robustness,
and controllability to effectively meet the need of an ATM environment is highly
demanded. The major challenge now is to successfully design and employ the ATM traffic

control.

1.2 Motivation

Generally, the traffic control in ATM networks fall into two major catcgorics: pre-
ventive and reactive [24]. Preventive controls take actions to prevent congestion from
occurring, it can be performed in two ways: admission control and bandwidth enforcement
[15]. Reactive controls take actions to recover from congestion once it occurs and y to

bring the degree of network congestion to an acceptable level.

The LB mechanism is a preventive control policing algorithm{31] [32], which
ensure that sources do not exceed allocated parameters once 2 connection has been admit-
ted to the network. In the leaky bucket mechanism, a cell is accepted only when it can
draw a token from a token pool. If the token pool is empty, then the cell is discarded.
Tokens are generated at a given rate and stored in the token pool. The pool is supposed to

be of finite size M. If the token poll is full, additional tokens are discarded. M can be seen



as the maximum allowable burst length since 2 maximum of M cells may be transmitted at

onc time.

This traffic policing LB algorithm can be combined with traffic shaping in a system
in which incoming cells can be queued in the cell buffer instead of being discarded when
the token pool is empty[2]. The cell blocking probability, the probability that a cell arrives
10 an empty token pool, depends on the size of cell buffer and token pool. The purpose of
a cell buffer is to handle a system in which the token pool control can turn on only during

times of congestion.

The drawback of LB [31] is the control parameters must be set with a large tolerance
in order to guarantee the contracted mean rate. Otherwise, incoming cells can be lost even

though the long term average rate of the source is within the allocated bandwidth.

A Virtual Leaky Bucket (VLB), has been proposed [11] [38] in order to overcome
the limitations of the LB policing method. Cells arriving at an empty token pool are
marked and transmitted without a token. Marked cells are considered violators of allo-
cated bandwidth. If at some point along its path a marked cell reaches a congestion link, it
may be discarded so the throughput of the unmarked cells is not significantly affected.
This not only allows us to take advantage of a light network load, but also enables a larger
margin of error in determining the token pool parameters. But when traffic sources are
very bursty, the VLB mechanism may frequently cause the network congestion. and there-
fore more cell loss since a large number of violated cells are marked and allowed to enter

the network. The performance requirements can hardly be met.

Due to the bursty and unpredictable nature of wraffic, variable Bit Rate (VBR) traffic
could produce temporary overloads at some internal network buffers. In such case, the

above mentioned preventive LB contro! approaches are not sufficient to control the con-

w



gestion, and additive reactive controls may be necessary to help the congested portions of

a broadband network recover to their normal state.

A potable example is combined reactive/preventive LB approach[26]. In this
approach. the authors propose an adaptive rate based congestion control mechanism based
on the LB scheme. The parameters of the mechanism are controlled using feedback infor-
mation sent by the network. The petwork is modeled as a multiplexer fed by a number of
sources each of which is controlled by a leaky bucket. A simple threshold policy at the

multiplexer queue is used to detect the congestion.

Another similar LB approach to congestion control was based on the two thresholds
control method called adaptive LB [37]. In this proposal. two threshold values were used
to determine the degree of network congestion, and LB token generation interval is

changed during the congestion period.

However, all of these congestion control schemes that utilize cither buffer threshold
or capacity estimation, suffer from some fundamental limitations. Generally, it is difficult
for a network to acquire complete statistics of input traffic. As a result, it is not casy to
accurately determine the effective thresholds in the ATM networks [5]. Therefore, a net-
work is forced to make a decision based on incomplete information. This is the motivation
behind developing a controller having a greater ability to adapt to dynamic, imprecise, and

bursty ATM environments without using hard bound thresholds.

Recently, fuzzy logic system have been widely applied to control nonlincar and

time-varying systems in which they can provide simple and effective solutions [3].

In {28] Ndousse proposed a fuzzy controller for managing cell generated by voice
sources in ATM networks. This is a fuzzy logic implementation of Virtual Leaky Bucket.
Bonde and Ghost [4] introduced fuzzy mathematics to provide fiexible and high perfor-

mance solution to queue management in ATM networks. The notion of the cell blocking,



wherein a fuzzy threshold function, based on Zadeh’s fuzzy set theory [23], is utilized to
deliberately refuse entry to the fraction of incoming cells from other switches. The
blocked cells are then rerouted to other switches. Recently, Cheng [5] proposed a fuzzy
wraffic controller that can simultaneously manage call admission control and congestion
control for ATM petwork. This paper introduces a performance analysis methodology
which does not involve parameter optimization. In contrast, we develop an optimization

method to select the network parameters for optimal performance.

1.3 Objectives of the Thesis

Overall, previous rescarch has provided strong indications that fuzzy set theory can
provide a robust mathematical framework to deal with real world imprecision. In this the-
sis, we propose an ATM congestion control mechanism that introduces a leaky bucket
scheme based on fuzzy logic principles. The aim of this approach is to overcome the limi-
tations found in traditional leaky bucket control scheme and present a new and simple
methodology to deal with an ATM network congestion. The fuzzy LB controller that we
will present in this study. processes the feedback information (indicating the network con-
gestion status) using a mathematical approach based on fuzzy set manipulation. By
cmploying appropriate fuzzy rules and fuzzy membership functions, the “threshold™ of the
network congestion status is assigned a continuous membership function which covers a
specified range of buffer occupancy values. In this way each network occupancy level
yiclds a different token generation rate. The main objectives of the thesis are as follows.

1) Develop a fuzzy Leaky Bucket (LB) congestion control scheme based on fuzzy
logic principles. The leaky bucket parameters such as token generation interval may be a
function of the network load or congestion. By formulating a set of fuzzy rules between
network congestion and LB token generation interval, the complex mathematical treat-
ment of the classical feedback control is avoided, and the hard bound membership effect

in the traditional LB is also eliminated in favor of “soft” bound membership functions.



2) Identify both fuzzy LB parameters and traditional adaptive LB parameters that
affect the effectiveness of the congestion control strategies. Optimize both approaches in

order to get maximum performance.

3) Compare the optimal fuzzy LB and the adaptive LB schemes by developing two
ATM network simulations. The first is an ATM network simulation using adaptive LB
control scheme. Another is ATM network simulation using fuzzy LB control scheme. The
performance of fuzzy LB control scheme and adaptive LB control scheme is evaluated
under the same network condition and (optimal) parameter sctting. Finally, the perfor-
mance of the fuzzy LB and adaptive LB is also evaluated under self-similar traffic load
[16]).

1.4 Thesis Organization

The remaining chapters of this thesis arc organized as follows:

In Chapter 2 we review the fundamentals of fuzzy logic, fuzzy scts. fuzzy sct opera-
tion, and fuzzy logic controller. The difference between crisp set and fuzzy sct is also

compared. Fuzzy logic controller algorithm is introduced.

In Chapter 3 the fuzzy LB control scheme including fuzzy rules and membership

functions is developed. The adaptive leaky bucket control scheme is also introduced.

In Chapter 4 we present our simuiation methodology and discuss our results of the

comparison between the two LB controllers.

In Chapter 5 conclusions and suggestions for further work are given.



Chapter 2 Fuzzy Logic Controller in
ATM Networks

2.1 Introduction

Onc of the latest control methodologies is based on tke so called “intelligent control™
which is defined as 2 combination of control theory and Artificial Intelligence (AI) [3]
[22]. Among many possible new methodologies based on Al fuzzy logic is a popular area

which has received a considerable research interest in recent years.

Fuzzy logic comprises a set of principles on which fuzzy control is based. Fuzzy
control is much closer in principle to human thinking and natural language compared to
the tradirional logic systems [19] [22]. Unlike binary (yes or no) information, fuzzy logic
is 2 multivalued logic that allows for degrees (e.g., normal versus slow or fast) of set
membership, therefore. it may provide an effective way of capturing the approximate.

inexact nature of the real world.

A significant number of commercial applications rely on fuzzy logic. Examples
include as controller for tasks such as managing temperatures and energy efficiency in
heating and cooling devices and regulating timing and fuel flow in automobile engines
[9]. Controllers also are used to make constant operating adjustments to subway trains,
home appliances, cameras, and elevators. In this thesis, it will be used in ATM network

congestion control [9].

Fuzzy logic’s benefits are fault tolerance and the ability to provide accurate

responses to ambiguous data. A Fuzzy Logic Controller (FLC) provides an algorithm



which converts the linguistic control strategies based on expert information into an auto-
matic control srategy. The methodology of the FLC appears very useful when the pro-
cesses are 100 complex for analysis by conventional quantitative techniques. and attractive
when the available sources of information are interpreted qualitatively, inexactly, or

uncertainly.

Since ATM networks form an appropriate transport for a variety of types of traffic,
the ATM rraffic controller has to take into account the different traffic characteristics (e.g..
burstiness, peak rate, and average bit rate) in order to guarantee certain quality of service
requircments. Since there is a dynamic change of the network traffic, it is very difficult to
get an analytical description matching the network node situations and modelling burst
traffic sources. A good controller is required to solve this complex problem. Fuzzy logic
has been applied for admission control scems to be a promising method for waffic shapiag

in ATM networks [17].

The purpose of this chapter is to introduce the concept of fuzzy theory and fuzzy
logic control. The principles will be applied in the next chapter for the development of a

fuzzy ATM maffic controller.

2.2 Fuzzy Set and Fuzzy Logic

The fuzzy set theory is 2 generalization of conventional set theory that was intro-

duced by Zadeh in 1965 as a mathematical way to represent vagueness in everyday lifef3].

2.2.1 Fuzzy Terminology

Brief descriptions of several major terminologies of fuzzy logic are presented in

what follows [19].



« Crisp Logic: Another name for traditional Boolean logic to differentate it from
fuzzy logic. In crisp logic, the three logic operations AND, OR, and NOT return

either 1 or 0.

« Crisp Set: The traditional definition of a set in classical logic. Crisp sets have strict
membership criteria according to which an object is either completely included or
excluded from the set. They are mathematical sets with definitive boundaries. For
example, the oil temperature is between 300°F to S00°F. In crisp logic. two logic
values can be used to describe the oil temperature. Assume that the oil temperature
being higher than 400°F refers hot oil (comresponding to crisp logic 1) and the oil
temperature being lower than 400°F corresponds to cold oil (corresponding to crisp

logic 0). The mappings of temperature and ¢risp logic value are shown in Table 2-1.
The sct of hot oil = {temperature between 400°F - 500°F}

The set of cold oil = {temperature between 300°F - 400°F}

Table 2-1 Temperature versus crisp logic value

Temperawre (°F) | Crisp logic value Meaning
320 0 cold oil
360 0 cold oil
380 0 cold oil
420 1 hot oil
460 1 hot oil
500 1 hot oil

* Fuzzy Logic: The process of solving problems that deal with ambiguous data using
a multivalued logic to represent a crisp-logic system. Fuzzy logic holds thar all
things are a matter of degree (e.g., warm versus cold or hot). In fuzzy logic, the three

logic operations AND, OR, and NOT return 2 degree of membership that is a num-



=

*

*

ber valued between 0 and 1. We still use the previous o1l temperature example. In
fuzzy logic. the multiple logic value can be used to describe the oil temperature.
Assume that the oil temperature 400°F means warm oil. the oil temperature 500°F
means very hot oil. and the oil temperature 320°F is very cold oil. The possible
mapping of temperature and fuzzy logic value is shown in Table 2-2.

Table 2-2 Temperature versus fuzzy logic value

temperature (“F) | Fuzzy logic value Mecaning
320 0.1 very cold oil
360 03 cold oil
380 04 slight warm oil
420 0.6 very warm oil
460 0.8 hot oil
500 1 very hot oil

Fuzzification: The process for converting crisp numerical input to fuzzy logic valuc
by combining actual input values with stored membership functions. For the exam-
ple shown in Table 2-2, the input of controller is temperature. After fuzzification the

temperature is converted to a fuzzy logic value.

Fuzzy Inference: Procedure for processing the input fuzzy logic value according to

the fuzzy control rules, and yielding a control output (fuzzy logic valuc).

Defuzzification: A process in which a fuzzy output is converted into a crisp, numer-

ical result.

Fuzzy Set: A nontraditional type of set that allows an element to have gradual or
partial degree of membership. In fuzzy logic, the traditional Boolean values of true
and false (1 and 0) are replaced by continuous-set membership values ranging from

0 to 1. In the previous oil temperature example, assume the fuzzy set A = {hot oil},

10



then temperature 320°F has a 0.1 degree of membership in A, temperature 400°F
has 2 0.5 degree of membership in A, while temperature 480°F has a 0.9 degree in
A

« Membership: The degree of inclusion in a set such as 0.1, 0.5, and 0.9 in the above
example. Fuzzy sets have values between 0 and 1 that indicate the degree to which
an clement has membership in the set. At 0, the element has no membership: while

at 1, it has full membership.

2.2.2 Fuzzy Set Theoretic Operations

Let U be a set U= {x. x2. x3....}. where x; could be discrete or continuous. U is
called the universe of discourse[22]. x; represents a generic element of U. Let 4 and B be
two fuzzy scts in U with membership functions u  and p 5. respectively. The set theoretic
operations of union, intersection and complement for fuzzy sets are defined via their mem-
bership functions. We now briefly outline the definitions of the operations used in the the-
sis[22].
Definition 1 Union: The membership function p, , 5 of the union A w Bis defined for all
x e U by

Paop(® = 0 (D) vig(x) = maxin, (¥).pp(x)) @221
Definition 2 Intersection: The membership function u , - p of the intersection 4 N B is

defined forall x € U by

Himg(®) = p (@) Apg(x) = min{u, (x),pp(x)} @222
Definition 3 Complement: The membership function p , of the complement of a fuzzy set
A is defined for all x € Uby

() = 1-p,(x) (2223)

1



Definition 4 Cartesian Producr: If 4,, - - - .4, are fuzzy setsin

U, - - - . U,.respectively. the Cantesian productof 4, - - - .4 _isafuzzyset
in the product space U; x - - - x U, with membership function defined as:
Ha x... Mn(xl.xz. X)) = min {p_41 (x;). By (x,)} (2229

Definition S Fuzy relarion: An n-ary furzy relation is a fuzzy set in

Ux - - - xU,andis expressed as

2.2.3 Fuzzy (or Linguistic) Variables

The use of fuzzy sets provides a basis of a systematic way for the manipulation of
vague and imprecise concepts. In particular, we can employ fuzzy sets to represent lin-
guistic variables. A fuzzy variable can be regarded as a variable whose values arc defined

in linguistic terms. More specifically:

Definition 6 Fuzzy Variables: A fuzzy variable is characterized by a 3-tuple(x, T'(x), U).
where x is the name of variable. T¢x) is referred 1o as the term set of x in the fuzzy logic
literature[22]. U is the universe of discourse. We now present an example to explain the
meaning of a fuzzy variable. Let us assume that speed is interpreted as a fuzzy variable,

then its term set T(speed) could be

T(speed) = {slow. moderate. fast}

where each term in T(speed) is characterized by a fuzzy set in a universe of discourse U =
[0, 10]. We might interpret “slow™ as “a speed below about 4mph,” “moderate™ as ““a
speed close 10 5.5mph,” and “fast” as “a speed above 7mph.” These terms can be charac-
terized as fuzzy sets whose membership functions “slow,” “moderate™ and “fast™ are

shown in Figure 2-1.

12
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A slow moderate  fast
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0.5
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4 55 71 1T Speed

Figure 2-1 Representation of fuzzy speeds

2.2.4 Fuzzy Implication

A fuzzy control rule such as “if x is A then y is B” is represented by a fuzzy implica-
tion function and is denoted by A -> B, where A and B are fuzzy set in universes U and V
with membership function p, (x) and pp (), respectively.

Definition 7 Fuzzy Conjunction: The fuzzy conjunction is defined [23] forall x € U

and ye V by
A>B=4AxB= [ (n,(x) e pz0) )d(xy) 2240

UxV
where e isan operator such as union or intersection.

Mamdani’s mini-fuzzy implication [23]:

Mamdani’s mini-fuzzy implication R, is defined by using the definition of the fuzzy
conjunction if an intersection operator is used in (2.2.4.1).
Ro=4xB= [ () app®) )d(xy) @242)
UxV
If the input is fuzzy singleton xg, then the results derived by employing Mamdani’s
minimum operation rule R, can be expressed simply as
R: ;A ug ) (2243)

where &; = p, (x,)



2.3 Fuzzy Logic Controller

As mentoned earlier, a fuzzy logic controller consists of three stages (or processes),

fuzzification, inference engine and defuzzification as shown in Figure 2-2. The conwoller

X 5| Fuzification »| Inference »| Defuzzification _y,
Engine
A
Fuzzy rule base

Figure 2-2 Fuzzy logic controller

receives a crisp input x, and then it “fuzzifies” the crisp values in the fuzzification stage. In
the inference engine stage, according o a set of rules that have been sclected either on
intuition or according to the desired response of the system, each rule’s consequent then
contributes to the final result to the degree that its antecedent is true. A defuzzification

process transforms the fuzzy value back to crisp value to provide the final control result.

The functions of each stage are now described in detail. The fuzzification stage

involves the following steps:
a) measurement of the value of input variables.
b) implementation of a scale mapping of the input value if necessary.

¢) conversion of input value into suitable fuzzy values.

14



The inference engine is a processor that uses the degree of truth in rule premises to
select an appropriate rule to execute. It has the capability of simulating human decisicn-
making based on fuzzy concepts and of inferring fuzzy control actions employing fuzzy
rules of inference. It is a way of producing fuzzy responses from fuzzy rules. A fuzzy rule

is defined by the relation between condition (or antecedent) and action (or consequent).
If (a set of conditions are satisfied) THEN (a set of consequences can be ipferred).

A fuzzy system is characterized by a set of linguistic description rules based on
expert knowledge. In the case of single-input-single-output fuzzy systems, fuzzy control

rules can be expressed as:
RI:Ifxis 4, thenyis By,

also Ry: if x is 45 then y is B,

also R;;: if x is 4, then y is By,
where x is an input fuzzy variable, y is an output fuzzy variable. 4; denotes the fuzzy sets
of the antecedent fuzzy variable x and B; denotes the fuzzy sets of the consequent fuzzy
variable y. The membership functions of the fuzzy sets 4; and B; are n .y, (x) andp B, o).
If we assume the input is fuzzy singleton x, and the consequence is B, by using Mam-
dani’s minimum operation rule R, shown in (2.2.4.3) as our fuzzy implication function,
the ith rule leads to the control decision

Mg ) = ARz ) = by (5) Ay () 2341)

which implies that the membership function p B; (») of the infered consequence B’ is
given by

up0) = Vup ) = ¥ (&apg ) (23.42)
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Defuzzification yields 2 nonfuzzy control action , from an inferred fuzzy control
action by finding the center of the area of . (¥). The calculation is done as follows
[23]:

L (23.43)

* ey
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Chapter 3 Adaptive Leaky Bucket and
Fuzzy Leaky Bucket

3.1 Adaptive Leaky Bucket

In an adaptive LB control approach (the interested reader may consult [37]), the token
generation rate may be a function of the network load or congestion. In most cases the
congestion of 2 network can be quantified by the switch buffer occupancy percentage of
the network. We define such a measure as the nenwork occupancy ratio if we assume lower
threshold of network occupancy ratio is 61 and upper threshold of network occupancy
ratio is 85. We further assume a system evolving in discrete time. If at time slot 4 the token
generation interval is y;, then at time slot (k+1) the token generation interval 3.4 can be
calculated as:

If (network occupancy ratio at time slot k < threshold 9,),
then Yiess = oy (@ <1;

else
if (network occupancy ratio at time slot £ > threshold 8;),

then Y41 = G (@2>1);

else

if (threshold 8; < network occupancy ratio at time slot k < threshold 8,),

then Y =M,
where the thresholds 8; and 8, may be selected suitably so that certain performance mea-

sures are optimized. Furthermore, in this algorithm, a; (o) is the rate of the decrease

17



(increase) token generation interval. We will refer to them as the roken generation adapta-

tion parameters.

In this control framework, a control rule that depends on 2 number of thresholds
(usually two) for LB parameter adjustment is employed. These thresholds represent high

or low network occupancy or congestion.

Congestion in the network is detected when the network occupancy ratio exceeds the
upper threshold 6. In this case, the leaky bucket limits the transmission of traffic by
changing the token generation interval y (in this case the token gencration interval is

increased).

Lower network traffic load is also detected when the network occupancy ratio is less

than the lower threshold 6. In this case, the token gencration interval is reduced.

The aim of adaptive control is to avoid the two extremes that may happea in basic
leaky bucket scheme. In one extreme where the leaky bucket does not throttle the sources,
most of the cell loss takes place inside the network, which affects the performance of other
sources as well. In the other extreme, where the leaky bucket is “tightly™ controlling the
source, most of the cells are buffered in the leaky bucket queucs, cell loss may occur at the
access node even if the channel bandwidth to which the sources is connected is underuti-

lized.

The challenge of this control scheme is to choose appropriate control parameters,

which in our study are the network buffer thresholds.

3.2 Fuzzy Leaky Bucket Mechanism

In this section, we propose a modification of the adaptive leaky bucket based on
fuzzy logic principles. We will refer to this system as the “fuzzy™ leaky bucket. A fuzzy



LB (Figure 3-1) bears certain similarities with the adaptive LB and consists of a finite

token buffer, a user buffer, a stream of arriving bursty cells and a fuzzy logic controller.

)3
—-1HI >~ 5 —

Cells
Generation

ATM Network

\

Token Fuzzy
Generator Controller

Figure 3-1 Fuzzy leaky bucket

In the fuzzy LB mechanism that we propose in this study the lower and higher network
traffic loads do not correspond to fixed thresholds 6, and 6-. In order to develop a more
realistic view of buffer occupancy the traditional notion of “buffer occupancy™ shown in
Figure 3-2, is appropriately modified with three fuzzy states as “SMALL, MEDIUM and
LARGE". This approach provides continuous set membership functions and implies a
soft, gradual transition between small and medium as well as medium and large network
loads. We utilize 2 triangular or trapezoidal symmetric shaped membership functions
shown in Figure 3-3. The token generation interval y is determined by means of the fol-

lowing three rules:

Rule 1: If the network occupancy (x) is small (Ay), then the token generation interval y
is short (By),

Rule 2: If the network occupancy (x) is medium (A,), then the token generation interval
y is medium (B,),
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Rule 3: If the network occupancy (x) is Jarge (A3), then the token generation intcrval ¥
is long (Bs),

B; 6.
Light Load Normal Load Heavy Load
oy y .y
04 0.8
Buffer occupancy

Figure 3-2 Partitioning of the buffer occupancy corresponding to two thresholds

Small Medium 6, Large

——d D
-

Buffer occupancy
Figure 3-3 Modified buffer occupancy corresponding to three fuzzy states

where x is an antecedent (input) fuzzy variable representing the network occupancy and y
is an (consequent) output fuzzy variable for the token generation interval. Furthermore, 4;
denotes the fuzzy sets of the antecedent fuzzy variable x (small, medium and large) and B;
denotes the fuzzy set of the consequent fuzzy variable y (short, medium and long) fori =
1, 2, 3. The membership functions of the fuzzy sets 4; and B; are By, (x) and ug ) as

depicted in Figure 3-4.
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Figure 3-4 Fuzzy variable membership functions

The calculation of the fuzzy LB follows the equation (2.3.4.1) - (2.3.4.3) presented
in chapter 2. The graphic presentation of the calculation is shown in Figure 3-5. If the
input is assumed x;, the assumed fuzzy membership functions are shown in Figure 3-4.
Finally, a nonfuzzy control result y, can be obtained by finding the center of the area of

Hp: (») . This can be achieved by using equation (2.3.4.3). In the discrete simulation

[23]. The computation of the center of the area can be approximately equal to




2 up0) -y

Yo = G21)
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where n is the number of quantization levels of the output.

Figure 3-5 Fuzzy reasoning and implication of fuzzy LB

We readily see that the fuzzy LB approach modifies the traditional LB in three fields.
1)The fuzzy LB uses of fuzzy variables in place of numerical variables. 2) The fuzzy LB
characterize the relations between input and output variables by fuzzy rules. 3) The fuzzy

LB solves the complex relations by a fuzzy implication.



Chapter 4 Network Performance
Evaluation

4.1 Introduction

In this chapter, the performance of the ATM network with the proposed fuzzy LB
congestion control mechanism is investigated. In order to evaluate the effectiveness of the
fuzzy LB, the performance of the ATM network with the adaptive LB mechanism is also
studied and compared with the corresponding one of the fuzzy LB. Network parameters
which significantly affect the performance are identified and optimized for the two control
schemes. A comparison of the two control schemes is carried out under the same network
condition and optimal parameters. Finally, the performance of the fuzzy LB and adaprive

LB are evaluated under self-similar traffic load.

The performance analysis in this section is based on simulation combined with

numerical optimization methods.

4.2 Network Simulation

4.2.1 Network Topology

Figure 4-1 illustrates a diagram of the simplified ATM network topology that will be
studied. In this model, a “two hop™ (one switch) network topology is assumed and the
trunk line speed is set at 50 Mb/sec. Two model configurations are compared namely
adaptive LB control and fuzzy LB control employed for policing the data sources,



ATM

Source Switch

Destination

access
acecess

Figure 4-1 ATM network topology

4.22 Quality of Service Parameters

The network performance is evaluated by two quality of service parameters: cell loss

ratio and queueing delay.

Cell in an ATM network may be lost due to limited buffer capacity at switching/mul-
tiplexing nodes. In such case cells are lost from overflowing buffers fed by burst raffic
during peak-rate emission phases. The effect of the burstiness in an ATM network can be
limited by source policing using LB control. In our study, cell loss may bappen in the user
queue (LB queue) and the network switch queue (see Figure 4-2 network queueing

model).

An overall cell loss ratio L is calculated within a relatively long simulation length

interval (steady state condition) and defined as:

L= (L,+L)/L, @2.1)
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where L, and L,, are, respectively, the number of data cell lost in network queue and user
queuc and L, is the number of the total dara cell that sources sent 1o the network during a

replication of a simulation.

End 10 end delay on the other hand is a combination of queueing delay, propagation
delay, convergence/segmentation delay, and switch delay. Convergence/segmentation
delay is incurred when wraffic is translated and segmented into cells by convergence/seg-
mentation services at the sender, when the opposite operations are performed at the
receiver. Convergence/segmentation delay and switch delay are normally invariant with
respect to traffic conditions, and they may be ignored. We primarily focus in the variable

queucing delay D defiaed as:
D =D, +D, 422
where Dy, and D, are, respectively, the network queue delay for data traffic and the user

queucing delay for data traffic.

4.3 Simulation Model and Assumptions

43.1 Simulation Model

A detailed view of our simulation model contaiﬁing a number of data and video
sources is shown in Figure 4-2. Video is used as background traffic in all simulation exper-
iments and it carries 25% of the total load. Furthermore, we assume that it is not controlled
by a LB since video traffic is delay sensitive. Each data source is however policed by a
LB. Both video inputs and the LB output are delivered to an ATM queue (representing a

switch or multiplexer) which is assumed to have 2 50 Mbit/sec service link.

Two simulation case studies are implemented using the S(MSCRIPT 11.5 simulation
language. In the first we employ an adaptive LB control scheme as described in section 3.1

while in the latter we develop a fuzzy LB control methodology outlined in section 3.2. The



simulation is done in discrete time aud the simulation time unit corresponds t0 0.00848 ms

which is the service time of an ATM cell corresponding to 2 bit rate of 50Mbiv'sec.
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Figure 4-2 ATM simulation queueing model

4.3.2 Poissor Prceess Traffic Model

A Poisson batch arrival process is used to model the data wraffic. The probability dis-

tribution of the batch lezgth in each arrival follows a truncated geometric distribution.



This traffic model is consistent with results reported in [14]. We assume that the mean
batch length of a data traffic is 20 cells, which is suggested for token ring traffic in [30].

Table 4-1 lists the average arrival rate of a data source in the different network data traffic

load.
Table 4-1 Network traffic load vs. average Poisson batch arrival rate
Netns | puef | AvemseDum ATl | yrean s R
40% 4 590 5
45% 4 663 5.625
50% 4 737 6.25
55% 4 811 6.875
60% 4 885 7.5

4.3.3 Self-Similar Traffic Model

Statistical analyses of large sets of waffic measuremeats [36] [16] from working
packet networks show that, from a statistical view point, traditional modeling assumptions
such as Poisson batch arrivals, exponential service and Markovian structure cannot suffi-
ciently represent real traffic patterns. Since all these models have in common an asymptot-
ically exponential decay of autocorrelation function and a rapidly decaying marginal
distribution tail. Furthermore they lack a systematic way of simultaneously fitting both the
empirical marginal distribution and the autocorrelation function. Instead, actual network

traffic can be more accurately matched by self-similar (fractal) models.

‘We now recall some of the results in [36] about a set of ethernet LAN traffic mea-
surements at the packet level. The observation was that the arrival rates measured over
larger time scales (hours, minutes) are indistinguishable from those measured over smaller
time scales (seconds, milliseconds). In particular, no natural length of a “burst” is discern-

ible: at every time scale ranging from milliseconds to minutes and bours, bursts consist of
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bursty subperiods separated by less bursty subperiods. This is the so called the “self-simi-
lar™ property of ethernet traffic.

The crucial feature of self-similar processes is that they exhibit long range depen-
dence (LRD), that is, their autocorrelation function r(k) decays less than exponcntially
fast, has the form r (k) ~ K™, where 0 < B < 1. The quantity K= 1- B/2 s call the burst
parameter. This is in contrast to traditional stochastic models, all of which exhibit short
range dependence. LRD processes are non-Markovian in nature and give rise to features
and network bebavior that are dramatically different from those of traditional short-range
dependent processes. In particular, the latter give rise to a summable autocorrelation func-
tion0 < Zr (k) <, while long-range dependence implies non-summability of the corre-
lation Z: (k) — o=. The serious implication for ATM network design is that conclusions
based cl:n traditional models may not be applicable under self-similar traffic models.
Therefore, in this thesis, the network performance will be also evaluated by using a self -

similar raffic model.

There are some stochastic models which exhibit the self-similar property. Two of
them, namely the exactly self-similar fractional Gaussian noise (FGN) and the asymptoti-
cally self-similar fractional autoregressive integrated moving-average (F-ARIMA) pre-

cess, are the most commoaly used [16).

The generation of long synthetic races from self-similar Gaussian processes is per-
formed by following the procedure in [16]. A Hosking’s procedure is selected to generate
a wrace from self-similar Gaussian processes. For such a process X with mean m = 0, the

conditional mean and variance X}, given the past values x;._;, X;_,....Xg may be written as:

k
My = EQG|X_ 1% g0 oo Xg) = > Pk~ 4.3.1)
j=1
of £ 2
Ve = var (X _ 1 X_p o Xg) = © [H(l -0 ,-,-)] 4.3.2)
j=1
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Here ¢ is the jth partial correlation coefficient of {X;} and the @y are partial linear
regression coefficients. For simulating a sample process with correlation r(k), we have the

following algorithm:

1. Generate a starting value x, from a Gaussian distribution N(0,vg). Set Ny=0, Dy =

2. Fork=1,...,8-1, calculate P J = 1,..., k, recursively via the equations

k=1
Ne=r(® =3 o, (& @433)
j=
\
Dy =D, ,-N;_,/D,_, 434
9y = Ny/D, (43.5)
O = Oy =Pty = Lo (B=1) “43.6)

k
calculaten, = > @%_;and v, = (1-¢ik)vk_1 . Generate x;. from the Gaussian

distribution N(rr{;\}k).

This method is applicable to any causal Gaussian process as long as the correlation

function r(k) is known.

The generation of a self-similar process Y; with a desirable marginal distribution can

be done by the following transformation [16]:

Y= h(X) = FP(Fy(X)) k=12, @37
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x; can be viewed as a Gaussian process with zero mean, unity variance and autocorrelation
function r(k). F(x) is its marginal cumulative probability function. Fy{») is a marginal

cumulative probability function of process Y.

In this thesis, F{y) is obtained by inverting the empirical distribution shown in Fig-
ure 4-3. We assume that the self-similar Gaussian process X has the following Hurst
parameter H = 0.6, H=0.75, and H = 0.95. Three traces with same Poisson marginal dis-
tribution and different autocorrelation functions (H = 0.6, /#=0.75, and H = 0.95) are gen-
erated as our data sources in the simulation. The mean data rate for each data source was

measured to be 1.5Mbivs.
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Figure 4-3 Video frame empirical distribution
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4.3.4 Video Trace

The video source traces that were selected to drive the simulations are segments
from the movie “Star Wars” that were collected from Internet at the Bellcore site
(fip.bellcore.com). Figure 4-4 shows a plot of the bit rate for a segment of the “Star Wars”,
The segment is approximately two minutes long. Each video frame was appropriately
parsed into a variable number of ATM cells depending on the frame size and assuming an
AALS connection. The mean bit rate was measured to be 6.25Mbit/sec for each source.
The aggregate mean bit rate of video sources in the simulation is 12.5 Mbit/sec corre-
sponding to two video sources. The video cells are entering the network buffer unre-

stricted along with the output traffic of each LB.

Bits per frame

% 500 1000 1500 2000 2500 3000 3500
Frame number

Figure 4-4 Bitrate of video traffic
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4.3.5 Transient Time and Variance Reduction

In Figure 4-5. an estimated mean queueing delay versus simulation run time is plot-
ted. The mean queueing delay for data cells was computed at 0.2 second intervals. Steady
state conditions are reached after 3 second according to Figure 4-5. During the first 1.2
second, the downward bias is observed due to the empty buffer initial condition. In all
simulations data collection starts after 3 seconds of warm-up period to avoid the ‘nitial

transient time.

0.3F

0.2

Average queucing delay (ms)

(] 05 1 15 2 25 3 35 4 4.5 s
Simulation run time(sec)

Figure 4-5 Estimated mean queueing delay vs. simulation run time

Data variance reduction is achieved by simulating different replications. The number

of replications is determined by the following procedure.

The half length (b.I) of a 100(1-c)% confidence interval for a mean 8, bascd on the t
distribution, is given by [1] [21]
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hI=t,, p_15(8) 4.3.8)
where a is the level of significance, & (8)= S/ (JR) . S denotes sample standard devia-

tion, while R is the number of replications.

To meet 2 mean queueing delay half length criterion of € = 0.4ms with confidence

95% (o = 5%) R must be chosen so that

H N
Bl = 22R10 @39)

which provides an estimation of the number of replication as follows:

s S\
Rz(-“’—f‘—‘) (4.3.10)

4.3.6 Assumptions for the Network Parameters
Table 4-2 summarizes the assumptions of network parameters that are used in the
simulations for both adaptive LB and fuzzy LB. The token buffer size of LB is determined

by the average burst length in the token ring network[30].
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Table 4-2 Network parameter assumptions

Description Assumpronal | Assumption of fuzzy
Sin:xulation Length for Each Repli- | 18 sec 18 sec
cation
Number of Replications 20 20
Network Buffer Size 150 cells 150 cells
User Buffer Size 200 cells 200 cells
Number of Video Sources 2 2
Average Arrival rate of a Video 6.25 Mb/s 6.25 Mb/s
Source
LB Token Buffer Size 20 cells 20 cells

Initial Token Generation Interval

equal to average cell
interarrival time

equal to average cell
interarrival time

N/A

«,: Decrease Rate of Token Gen- | 0.85
eration Interval

oy: Increase Rate of Token Gener- | 2 NA

ation Interval

ATM Nerwork Switch Service 0.00848ms 0.00848ms
Time (or time slot)

4.4 Preliminary Results and Methodology for
Adaptive LB

4.4.1 Performance Measures

In our simulation study, for the comparison of the effectiveness of the fuzzy and non-
fuzzy LB control schemes we developed the following performance methodology which
relies on a constrained optimization problem that involves the total cell delay D and loss
probability L as follows:

Minimize (with respect 10 x) the delay D(x) so that



L =L, 4.1

where L, is 2 given number that can be viewed as the maximum acceptable cell loss prob-
ability. Furthermore, the vector ¥ can be viewed as a control parameter (e.g., buffer occu-
pancy thresholds).

According to the Kuhn - Tucker conditions [10] [25], if the vector x* be an optimal
point for the problem above then there is 2 number A >0 such that

VD (x*) +AV(L(z*)-L) =0 4.4.2)
LM -L) =0 @43)

Equation (4.4.2) yields,
VoD E) +ALE)-LY)) =0 #44)

which is true if the Lagrangian cost function defined by

o Cad) =D +A(L@-L) (4.43)
attains a minimum at x*.

Thercfore in our simulation experiments, in order to determine the solution x* for the
optimization problem for each A we minimize the Lagrangian cost function C(x.2) with
respect to x and we check the following optimality condition

L®»-L)=0 (4.4.6)

If the condition is not true the value of A is adjusted appropriately until the condition
(4.4.6) is satisfied. in which case the Lagrangian cost minimizer x* is selected as the solu-
tion of the optimization problem (4.4.1). For the sake of completeness we assume that
both D(.) and L(.) are convex functions of x which is the case in most queueing problems
and evidenced by a number of plots (see Figure 4-6 and Figure 4-7).
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Figure 4-6 Cell loss L(8;. 65) using the Poisson process for '
data sources (p = 80%)

5D(61.62)

4.5
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Figure 4-7 Total mean queueing delay D(8,,6,) using the Poisson
process for data sources (p = 65%)

4.42 Cell Loss Criteria Lp

In order to determine a reasonable upper bound L, for the cell loss for cach control
parameter set (8,,8,) we first find the minimum value of L(8,,8;). The minimization was
performed by using a two-dimensional mean fielding annealing (MFA) optimization algo-
rithm (the interested reader may check [29] [6] references listed therein) which was appro-

priately incorporated into our simulation model. Initially our system was fed by video and
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Poisson batch data wraffic sources. The data maffic is policed (contolled) by an adaptive
LB. L(8,,8,) is evaluated at discrete steps over the two parameter (8,,8,) space by the
MFA algorithm. The range of values of the parameter set (8,,8,) fo- the optimization pro-
cess is shown in Table 4-3.

Table 4-3 MFA range of values for (6. 6)

Mipimum | Maximum .

Factors Value Value Stepsize
0, 0.22 0.55 0.03
6, 0.55 0.88 0.03

A phase plot of the parameter set (8),6-) during a MFA optimization is shown in Figure
4-7. In this particuler case, the network traffic load was maintained at 70%, including 25%
background traffic. Figure 4-8 indicates the point which is found as the minimizer of L(.,.)
by the MFA algorithm. Similar experiments were performed for various traffic loads. The
minimum cell loss ratio for each case is shown in the sv. < ad column of Table 4-4. Simula-
tions were also conducted for determining L(.,.) at the extreme points of the parameter set
(61.85) and finally the value of L, was selected as approximately twice the value of the
minimum cell loss ratio determined previously. The values of Ly for various network traf-
fic load conditions are shown in the third column of Table 4-4. Such a choice of L, guaran-
tees a feasible solution for the delay optimization problem (4.4.1) that we described in the
previous section and we will consider in greater detail in the rest of our study.

Table 44 Minimum cell loss ratio in adaptive LB

Network traffic Minimum cell L,
load loss
65% 0.0009 0.002
70% 0.0018 0.004
75% 0.0031 0.006
80% 0.0059 0.012
85% 0.0290 0.060
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Figure 4-8 (81.6,) trace recorded by running MFA

4.5 Simulation Results of Adaptive LB

4.5.1 Design Optimization for Adaptive LB

Optimization of the network performance is achieved by solving the optimization prob-
lem (4.4.1) with respect to the control parameters 8;, 6,. In this study, an analytic solution
of the appropriate cost functions is not available therefore statistical estimates were
obtained from simulation experiments.

According to equation (4.4.5), the Lagrangian cost function for adaptive LB in this case
is defined by:

C(6,,6,) = D(8,,8,) +1(L(8,8,) -L) 4.5.1)

with the following condition of optimality

(L(8,8,) -L;) =0 @.52)
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4.52 Adaptive LB Simulation Results Using Poisson Batch Arrival
Process for Data Sources

In our first experiment we determine the optimal parameters (8, 85) under each net-
work traffic load using Poisson batch arrival process for data sources. In order to keep the
control parameter space small we selected the adaptation parameters for the token genera-
tion time interval to be &;=0.85 and a, =2 [37].

For each positive A a series of simulations is performed incorporating an MFA algo-
rithm which determines the direction of descent for the Lagrangian cost function (4.5.1) in
the parameter space (8, 6,). When this numerical optimization is completed the optimal-
ity condition (4.5.2) is evaluated and if satisfied the experiment is concluded and the cell
delay D(...) is evaluated. In case the relation (4.5.2) is not satisfied the Lagrange multiplier
2 is adjusted and a new numerical optimization is initiated.

The optimal values of (8, 6,) for various network loads are shown in the second col-
umn of Table 4-5. We readily observe that under a network traffic load of 85% the token
generation interval is reduced by a factor of 0.85 when the network occupancy ratio is less
than 0.34 and it is doubled for network occupancy ratio greater than 0.67. Similar results
were obtained for other raffic loads as indicated in Table 4-3.

The queueing delay D(.,.) is calculated as 95% confidence intervals using the optimal
parameters for each traffic load, as shown in Figure 4-9. This figure will be used for com-
parison with similar resules that will be derived by the fuzzy LB controller as outlined in
the following section.

Table 4-5 Network traffic load vs. optima! parameters in adaptive control corresponding
to Poisson batch arrival process for data sources

Tmlgi‘i::“f_f:d o Pmo:t:;](ael].e:) A Value Condition for Optimality
65% 0.46, 0.79) 5500 |L (8}, 8,) —0.002] = 0.0001
70% (0.43, 0.76) 6000 |£(8,,8,) ~0.004] = 0.0001
75% (0.40, 0.73) 5000 |Z (8,.8) —0.006] = 0.0002
80% (0.37,0.70) 1000 |Z(8,,8,) ~0.012 = 0.0007
85% (0.34,0.67) 500 |£(8,, 8,) ~0.060] = 0.0020







