=

2

b B28 25

i I- I-

o | g22

:.. B L]

- []

‘L‘_— B I?.O
1.8
T

i b

e

Bel i

B R

Stz v

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A Ohti4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

] pa‘?es are missing, contact the university which granted
the degree.

Some es may have indistinct print especially if the

original pages were typed with a poor typewriter ribbon or
if the un?vaersity sent as an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-32% (r. 00/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une Qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a aide d'un ruban usé ou si l'université nous a far
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise a la Lol canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

A Study of Common Logic Design Errors

and Methods for their Detection

by
GORDON F. MEIN, B.A.Sc.

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of

the requirements for the degree of

Master of Engineering.

Ottawa-Carleton Institute for Electrical Engineering
Department of Electronics
Faculty of Engineering
Carleton University
Ottawa, Ontario

April 1988

© copyright
1988, Gordon F. Mein

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a 6té accordée

4 1la Bibliothidque nationale

du Canada de aicrofilmer

cette thise et de priter ou

:: vendre des exemplaires dau
im.

L'auteur {titulaire Au droit
d‘auteur) se réserve 1les
autres droits de publication;
ni la thése ni de longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-54395-7

The undersigned recommend to the faculty of Graduate Studies

and Research acceptance of the thesis:

"A Study of Common Logic Design Errors

and Methods for their Detection"

submitted by Gordon F. Mein in partial fulfillment of the

requirements for the degree of Master of Engineering.

\"4 [
Vk’ Tnesis Supe:visor

WO oo lan®

Chairman, Dept. of Electronics

Carleton University

April 1988

Abstract

This thesis provides a study of errors made in VLSI logic

designs, many of which are not revealed by present day logic

simulation or timing verification. Manual circuit audits are
one way to detect them, but are time consuming, and prone to
human error. Automating this process will greatly improve

the audit efficiency.

As a step in this direction, a preliminary rule set for de-
tecting these errors has been developed. It is also neces-
sary, in performing an evaluation, for the "protocol" of
signal timing to be specified. A method of describing timing
protocol (ATDL) has been developed. It is not only useful
for specifying 1/0 timing, but can also be used by the eval-
uator to represent the node protocols, which must be derived
from the input information. An evaluator program will be

more efficient at error detection than simulation, and com-

plements-the simulation process.

i

Acknowledgements

I would like to take this opportunity to thank Dr. M. Cope-
land and Dr. J. Knight for their feedback and guidance which
were invaluable in the preparation of this document. I would
also like to acknowledge the contribution of Bell-Northern
Research (BNR) which provided me with the tools necessary to
do the thesis work, and the opportunity to work with and
learn from experts in the area of circuit design. The design
experience gained with BNR provided me with an understanding
of design problems which was essential in the development of

this thesis.

ii

TABLE OF CONTENTS

1 L] 0 Imonumlm L] * * [] L] L] L4 L] L] L4 L] * L] L L 4 LJ L]

2.0 LOGIC DESIGN PROBLEM CLASSIFICATION .« .
2.1 Circuit Logically Incorrect

2.2 Clock or Signal Logically Inverted .

2,3 Hazards and Race Conditions ., . . .
2.3.1 Gating of two signals (Hazards) .
2.3.2 Race Conditions o o e s e s e e .
Set-up and Hold Violations e e e e e e e

t

Asynchronous Event Problems .,
2.6.1 Asynchronous/Synchronous laterfaces
Minimum Pulse Width Violations I
2.7.1 Asynchronous Self-modifying Outputs
Fan-in/Fan-out Violations
Conditionally Dangerous Circuits
2.9.1 Lock-up and Invalid States .
2.9.2 1Invalid Transition States .
2.10 Analog Mode of Operation

Y ~) [NN

* * o »
e o o @
. . L] L]
*» & & ® @

3.0 TECHNIQUES FOR DETECTING LOGIC DESIGN PROBLEMS
3.1 Categories of Errors .« e e e
3.2 Detection Methods

3.2.1 Tcritical e e e e e e s e e e .
3.2.2 Input Rules e e s s s e s e e e e s
3.2.2.1 Rules for All Inputs
3.2.2.2 Rules for Clock Inputs
3.2.2.3 Rules for Clocked Inputs
3.2.2.4 Rules for Jam Inputs
3.2.3 Output Rules . . . « ¢ « ¢ o ¢ o o &
3.2.3.1 Rules for All Outputs .« o e e e
3.2.3.2 Rules for Tri-state Outputs . .
3.2.3.3 Rules for External Outputs . . .
3.2.3.4 Rules for Output Timing Protocol
3.2,4 Cell Rules ., . « & o ¢ o o o o o o o
3.2.4.1 Rules for All Cells s v e s e
3.2.4.2 Rules for Lock-up e e e e 0 e e

4.0 RULE BASED EVALUATION e« s o s o
4,1 Basic Evaluator Requirements
4 1 . 1 The NETLIST [] [] L] L] L
2 The FANOUT List .« o
Pathfinding o« o e e
.1 Entry Nodes .

3 X
3.2 Next Nodes
3.3 Next Cell 1/0 Points
The Scheduler . e e
C

ircuit Initialization .

» L] . - . L] L] [] * [)
e & @ ® o & o @ o
e ®» & e o 8 e o o o
L] L [] L] [] L] - * * [}
® ® & @ e o @& o ¢ o

iii

Unconditionally dangerous/inferior circuits

* & ® ® o o « & @ s & o s @ * & o @ o 5 = e @ e & @ e e o @

*

4.2 Evaluation Example #1
4.3 Evaluation Example #2

5.0
5.

6.0
6.1

6.2

6.3

APPENDIX

GLOSSARY OF TERMS

REFERENCES

1.1

-

TIMING REPRESENTATIONS
5.1 A Timing Description Language
ATDL Syntax
5.1.2 Using the ATDL Syntax

-

DISCUSSION AND CONCLUSIONS
Program Considerations
Conclusions
Recommendations

.

-

*

A - ATDL Short Form Summary

98
105

113
113
115
131

135
135
139
141
144
146

149

LI F_ILL T1

Figure 1. CHIPBUGS Database Analysis Results 1%
Figure 2. Probable Clock Inversion Example 20
Figure 3. Probable Signal Inversion Example e o e o o 21
Figure 4. Circuit with Clock and Signal Gated e o . . 24
Figure 5. Gating of Clock and Signal (Alternative #1) 26
Figure 6. Gating of Clock and Signal (Alternative #2) 27
Figure 7. Circuit with a Clock/Reset Race c + e e . . 29
Figure 8, Circuit with Set-up/Hold Violation 31
Figure 9. Asynchronous/Synchronous Interface Circuit . 35
Figure 10. Asynchronous Self-modifying Outputs (Cct #1) 39
Figure 11. Asynchronous Self-modifying Outputs (Cct #2) 41
Figure 12. Alternative to Self-Modifying (Cct #2) . . . 42
Figure 13. Circuit With LOCk—up State e @ o o o o e e @ 45
Figure 14. Invalid Transition States: Circuit #1 . « .« 50
Figure 15. Invalid Transition States: Circuit #2 « . . 51
Figure 16. Circuit with Indeterminate Switching 52
Figure 17. Example Circuit #1 for Evaluation e + « o« . 100
Figure 18. Example Circuit #2 for Evaluation « o+ o .« 109
Figure 19. Timing Example #1 e s & e s s s s s s & a . 124
Figure 20. Timing Example #2 e e e s e+ s e« . e s . 126
Figure 21. Timing Example #3 s s s e s s s s e s . . 128
Figure 22, Timing Example #4 e o o o o o o s o o o o . 129
Figure 23. Timing Example #5 s e s s e e s s s s s « 130
Figure 24, Example Circuit #1 with ATDL Timing « « . . 133

1.0 INTRODUCTION

This thesis investigates the design of an automated logic
circuit evaluation system, If implemented, this system would
be able to perform audits of logic circuits by applying many
of the criteria that an expert would. It will be shown that
many errors made in VLSI designs can be detected by an eval-
uator, but may not be detected by simulation. This is not to
say that they cannot be detected by simulation, but that due
to human error, inadequate circuit modelling, or insuffi-
cient testing, the error may not be revealed. The evaluator,
therefore, is seen as being complementary to the process of

simulation. [BapS86]

As transistor geometries shrink in response to the demand
for greater levels of integration, the design complexity
(circuit size) has increased dramatically. "As the circuit
size increases, the complexity of evaluation increases non

1

2
linearly." [Mokv85] Reductions in the allowed design cycle
time, and a greater sensitivity to errors are further in-
creasing demands on design tools. Pressure to provide high
quality, quick-to-market, VLSI designs means that one cannot
afford to have many errors on the "first-pass." Errors can
hide other errors -- "the onionskin effect"™ -- and 1lead to
costly re-cycles and loss of time. "For companies competing
in the general microcomputer and memory chip market,
competitive pressures require the continual development of
chips that are both lower in cost and higher in performance.
..se.s Instead of backing away from the problem by designing
non-optimized circuits (an uncompetitive approach for the
general chip market), new tools are needed to verify and op-
timize VLSI circuit performance." [MarJ84] In short, inte-
grated circuit designs are now required to be much more
complex than in the past, with disproportionately fewer
errors, and shorter design cycle times. In order to meet
these demands, circuits must be designed much more effi-
ciently than in the past. Computer aided design (CAD) tools
must evolve to higher levels of sophistication to bring

this about.

In addressing the general problem of reducing the number of
first-pass design errors in logic circuits, it was recog-
nized that these errors tend to fall into three categories:

specification errors, logic errors, and errors in the appli-

3
cation of the chosen technology. The discussion in this
thesis is limited to the latter two. Specification errors
require different kinds of solutions than the other two be-

cause they occur before the design phase.

"Logic Simulation programs have long been one of the stand-
ard tools for design verification of 1logic networks."
[ChaEB5] It is, however, generally recognized that the capa-
bilities of simulators are limited when it comes to timing
constraint checking. Simulators are "pattern dependent; the
number of possible input patterns" (to fully check a cir-
cuit) "grows exponentially with the complexity of the cir-
cuit.” [JouNB83] Because of these simulation 1limitations, a

CAD area has developed called "Timing Verification."

Timing verifiers are aimed at determining critical timing
paths, set-up and hold violations, and in some cases, the
minimum possible clock period and duty cycle. [ChaE8S5,
MurM85, JouN83, NgP81, HitR82) However, the bulk of the work
in this area has been focussed on the problems associated
with developing computers, and microprocessors, which tend
to be driven by performance (speed) requirements. [(MonM82,
MarJ84, HitR82, MarF82] In these types of designs, faster is
better. As a result, companies have tended to use their most
advanced (smallest geometry) processes and have pushed the

designs to the process limit to achieve a cowpetitive advan-

4
tage. This has resulted in a greater need for accurate cir-
cuit modelling, and for analysis tools capable of
identifying circuit areas limiting performance. This is pri-
marily what has dictated the direction of timing verifica-
tion tools over the past ten years. Not surprisingly, these
tools tend to be quite specialized, optimized for synchro-
nous circuits only [DagM86), for a particular technology
[JouN83, WeiD87], or for more specialized applications with
only combinational logic [BraD86]. Such timing verification
tools, though varied 1in implementation, are all aimed at
"performance circuits,” those which are designed to run as

fast as the process will permit.

But many ASIC (Application Specific Integrated Circuit) de-
signs do not require the speed but the density that inte-
gration offers. It 1is common for the emphasis in such
designs to be on minimum implementation time (i.e., first-
pass success), with cost being a secondary although still
important consideration. Much of the gate array and stand-
ard cell business caters to such projects. In these types
of designs, there is often much less structure to the cir-
cuits being developed than in the case of computer circuit
designs. This tends to result in large amounts of simulation
and verification data, as compared to more structured cir-
cuits, and this must be assessed manually. Since essentially

the same tools are available to the standard cell chip de-

5

signer as to the rest of the industry, most circuit analyses
tend to rely upon simulation and timing verification as de-

scribed above.

Despite these checks, many design errors go undetected
until the evaluation (debugging) stage. One reason for this
is that simulators only provide the answers to questions
that are asked. This limits the circuit analysis to those
conditions that the designer conceived of and checked for.
"This means that someone, often the logic designer, must
write test cases that are intended to expose all timing
problems. But this assumes some a priori knowledge of where
the tiing problems are -- an assumption that is very tenu-
ous." [BenL82] Although circuit simulators are the primary
tools with which to verify circuit operation, the design
"guru" frequently reveals design flaws which are of a funda-
mental nature. For this reason, manual design audits are
performed, and result in fewer errors., Despite their value,
manual design audits are still subject to human error, and

so cannot be guaranteed to consistently uncover errors.

More recently, the needs of the general ASIC design commu-
nity have been recognized, and timing verification tools
have been developed which are more general in application,
Technology independence [HeiS87], and consideration of the

logical relationships between signals [WeiD87) are two exam-

6

ples of the developments in this direction. Nevertheless,
timing verification tools still only examine those areas
mentioned previously: critical paths, setup and hold vio-
lations, and minimum clock period and duty cycle. Even with
the combination of simulation and timing verification, many

errors in design are missed.

Logic simulators and timing verifiers can only be as accu-
rate as the circuit models backing them up. Today, indus-
try-wide attention is being given to improving model timing
accuracy. However, the focus has been on modelling correct
operation accurately. Non-existent, incorrect, or poor mod-
elling of faulty conditions continues to result 1in design
errors b2ing missed. In addition, a number of design error
types are often not discovered in either simulation or
timing verification. One example of this is logical signal
inversion, This type of error is common, and is often not
detected prior to circuit prototyping. Even when problems
are flagged during analysis, there is often so much good
data, or potential-hazard reports, surrounding the one real

problem that it is missed due to human error.

Another typical simulation and verification problem occurs
in circuits with inputs asynchronous to the master clock.
In such cases, it is not uncommon for a certain alignment of

events to create error conditions. While it is true that

2
such problems can be confirmed with logic simulators, it is
usualily not practical to perform the exhaustive simulations
required to uncover them in the first place. If not picked
up during design, such errors may go undetected for a very
long time during debug, since preliminary evaluations tend
to concentrate on verifying correct operation rather than
failure modes. None of the timing verifiers reviewed deal

with the problem of asynchronous circuit evaluation.

The preceding examples are currently very expensive to
detect prior to the prototyping of the devices. They are
expensive both in computing time and manpower, and can lead
to other problems that are very costly to correct. Pres-
ently, the only way to detect some of these problems is
through an audit, but this process is also subject to human
error, Even though the consulting designer may ask the
right question, there is no guarantee that he/she will cor-
rectly evaluate the circuit and identify the problem. This
is particularly true on larger circuits where the audit pro-
cess can be very tedious. A computer program developed to
perform the same type of analysis would eliminate the human
error aspect of the process, and greatly enhance the effec-

tiveness of the evaluation.

Static timing verifiers provide a limited amount of circuit

analysis, and require no timing input. Circuit simulators

8
can calculate the response to virtually any stimulus, but
require precise timing definitions, and extensive sets of
vectors to get good circuit coverage. Between the timing
verifier and the simulator is a gap that can be filled by
the evaluator, which requires only a general description of

the timing, and can provide extensive circuit analysis.

Before developing such a system, it is first necessary to
understand what types of errors are commonly made in design.
To this end, a study of a corporate database capturing chip-.
errors, BNR CHIPBUGS, was conducted. [MeiG87] The results of
the study, given in chapter 2, show that 46% of the chip
design errcrs resulted due to incorrect logic being imple-
mented, while the remainder were attributable to violations
of the circuit timing parameters, or inappropriate use of
circuit elements. Only 10% of the problems could be attri-
buted to misinterpreting or omitting a specified function.
An additional 5% were attributed to modelling inadequacies
and file manipulation errors. These problems aside, the re-

sults suggest that 85% of the errors made were detectable.

Having established a need for automatic checking of common
design errors, and having identified the types of errors
that can be detected, chapter 3 deals with techniques for
their detection. The approach taken is *“o develop generic

checks that will detect symptoms rather than attempt to

9
check for each of the error-types individually. The checks
take the form of rules, and are broken down into rules for
circuit inputs, outputs, and for the cells themselves. A new
concept, called Tcritical, 1is introduced, which is key to
detecting many problems. This approach to circuit analysis
is not rigorous, but does tend to he technology independent.
Rules are based on common practice using a conservative
design approach, so circuits that are flagged may not be in
error, strictly speaking, but they also may not be what the
designer intended. Flagging suspect circuits, so 1long as
the reports do not become overwhelming, results in identify-
ing both circuits that are unquestionably in error, and also
those that are worthy of a second look by the designer,
Often designs are implemented that were not what was in-
tended, simply because they happen to pass all simulations.

Such designs can lead to more subtle problems later.

Just as a designer cannot perform a circuit audit without
knowing the general timing for the circuit, an automated
system to fulfill this function must also have access to
some timing information. This has been recognized by others
in the development of better timing verification tools.
[BraD86, WeiDB87] However, the level of timing information
considered has been limited to identifying mutually exclu-
sive signals, to reduce the path calculations, and to bound-

ing clock waveforms, e.g., minimum and maximum rise and fall

10
times, This information, while valuable, is not sufficient
to do a circuit evaluation. What is required is a method of
specifying the format of the expected timing without having
to specify all possible sets of events. One need only exam-
ine the timing diagrams generated during a circuit audit to
understand how much timing information is really needed. Two
features of these diagrams are that, unlike event driven si-
mulation, the accuracy of the timing is not dependent on a
sampling interval, and it 1is possible to capture the re-
lationships between signals, and between parts of a signal,
the signal protocol. A method for specifying this informa-

tion has been developed, and is presented.

The first timing diagram attribute, accuracy, only becomes
an issue in simulations that are long compared to the sampl-
ing interval. It is desirable to make this interval as short
as possible to capture narrow events (glitches). However, if
the major features of the timing occur over a relatively
long time, a large number of samples are required. Manual
audits, on the other hand, show timing on a scale to reveal
its major features, and use expanded scales to consider spe-

cific areas of interest.
The second item, protocols, represents a fundamental differ-

ence between timing as it is specified for an audit versus a

simulation, Simulators are concerned with timing events,

11
specifically, logic state transitions (1 to 0, 0 to 1, 0 to
X, etc.). So in simulation, all circuit timing is handled as
a series of events. In reality, the timing consists of
strings of bits, »r continuous clocks, or other bursts of
activity, any one of which can be related to other timing
activities. These relationships can be viewed as the timing
"protocol." It is in these protocols that the intended func-
tion of the circuit is captured. Manual circuit audits are
able to take this information into account and capture
design errors that can be missed during simulation. Design-
ers using simulation to debug their «circuits, however,
cannot get the same coverage of their designs, because there
is presently no way to convey the missing information, the
protocol, to a simulator. Even if it were possible to
convey the information, simulators are not set up to operate
on such data, and this must also be done in an evaluation.
Timing protocols must be propagated from node to node. This
is a key difference between timing representations as they
are today, and what is required to satisfy the needs of an
evaluation tool. A method of representing the protocol of
timing has been developed and is presented in chapter 5.
This method is suitable both for the user to specify the
input and predicted output signals, and also for the com-
puter to use to represent internal node timing. The latter
point makes this method considerably different than any of

the timing input methods discussed to this point,

12
A similar design aid -- "CRITTER" -- [KelVvB84)] was developed
as an exploratory project for the purpose of critiquing dig-
ital circuit designs. This is a subsystem of a larger pro-
ject -- "REDESIGN -- [SteL84) which is a design assistant.
Both of these systems were developed using expert-system
technology. An extensive literature search on these systems
indicates that they were never taken beyond the prototype
stage, however,. Although the nature of the rules used has
not been discussed in the literature, the system has been
used on low complexity designs, up to a dozen SSI/MSI cir-
cuits, to demonstrate the concept. It is felt that this
thesis offers a viable set of rules for implementing such a
system, including some novel techniques not discussed in the

literature.

This thesis provides the groundwork on which the development
of a powerful design aid can be based. It bounds the problem
of circuit evaluation, and proposes rules for use in such a
tool. In addition, a new method of describing timing infor-
mation has been proposed, which should result in much lower
CPU times for evaluation, than debugging with simulations.
Much has been written on the subject of timing verification.
Only a sampling has been referred to in this thesis. Other
useful references include [DagM87, MaH87, GhoS86, GleM86,
HwaS86, RimC83, TamiE83, UlrE83, LeiS82, and MonMB2]. An in-

troduction to design problems is presented next.

2.0 LOGIC DESIGN PROBLEM CLASSIFICATION

This chapter serves as an introduction to common logic
design problems. Clearly, errors are not intentionally put
into circuit designs. They are caused by human error or
lack of knowledge. Many can be found during simulation or
other wverification means, but in some cases, identification
of a given problem through simulation requires extensive
work. Sometimes exhaustive simulation of an entire VLSI
design may be necessary. In other cases, simulators may be

incapable of finding the error.

In order to better understand the types of errors that are
made in logic design, a study of a corporate error database
has been conducted.[MeiG87] This database captures the symp-
toms, root causes, and recommendations for avoidance for all
integrated circuit design problems encountered at Bell-
Northern Research (BNR) over the past four years. It encom-

13

14
passes 76 chip designs. Of the over 300 "bug reports"
reviewed, approximately 45% were attributed to logic design
errors. The remaining 55% were composed of errors in the
following areas: analog design, chip layout, and specifica-
tion. For two errors, the source of the problem could not

be determined.

The results of the study are presented in Figure 1 on page
15 and are in order of significance. Note that these sta-
tistics are a reflection of the errors made in the BNR VLSI
design environment. They are, therefore, influenced by both
the design discipline used, and the capabilities of the CAD
tools. For example, set-up and hold time violations are
quite common errors in general, but this study shows that
only six percent of the errors were of this type. This rel-
atively 1low value can be explained by the introduction of a
simulator feature to check set-up and hold violations, which
took place early in the reporting period. 1In a design envi-
ronment without such a tool, it is expected that the per-
centage of such errors to be significantly higher. The
subject of design process and its effects on design quality
will not be addressed here but is discussed by T. Curtis of
BNR in a recent paper.[CurT86] The following sections define
each of the types of errors, provide examples and alterna-

tives, and include rules-of-thumb for their detection.

15
LOGIC ERRORS MADE IN VLSI DESIGN
Circuit logically incorrect
-Simulation problem
-too long, or insufficient test vectors (16%)
-error/stress conditions (5%)
-mixed-mode simulation needed (5%)
-two signals interchanged and not found (2%)
-design changed - incomplete resimulation(1%)
-inadequate analysis of results (1%)
-common design problem (not checked) (1%)
31%
-Specification problem
- specification misinterpretted (7%)
- function not implemented (3%)
10%
-Modelling problem
-inadequate cell modelling/documentation (3%)
-functional circuit model incorrect (1%)
4%
-Wrong file was used to create the chip 1%
46%
Clock or signal logically inverted 15%
Hazards and race conditions 7%
Set-up and/or hold violations 6%
Unconditionally dangerous/inferior circuits 6%
Asynchronous event problems 5%
Minimum pulse width violations 5%
Fan-in/fan-out violations 4%
Conditicnally (on timing) dangerous circuits 3%
Analog mode of operation (e.g. long rise time) 3%
100%

Figure 1., CHIPBUGS Database Analysis Results

16
2.1 1 1T ICALLY IN

This category is distinctly different from the others in
degree. In these cases, the design was fundamentally wrong!
As can be seen from the results (Figure 1 on page 15), 31%
of these problems can be attributed to difficulties in simu-
lation., Although some of the simulation problems shown could
logically be grouped together, they are split apart here to
provide examples of the kind of problems that may not be de-
tected in simulation. For examp’e, in two percent of the
cases studied two signals +‘ere interchanged on the sche-
matic, and the designer did not discover the problem. While
one might find humor in the fact that such an apparently ob-
vious problem could go undetected, this is a serious issue,
because it indicates that exhaustive simulation of the cir-
cuit did not uncover the problem. 1In total, 24% of all the
simulation problems reported were attributed to the simu-
lation being either too time consuming to run, or having too
few test vectors to catch the problem. This grouping in-
cludes error and/or stress conditions not being sufficiently
analyzed, signals interchanged and not detected, and common

design problems not being checked.

There 1is no replacement for a complete set of test vectors
vhen doing circuit simulations, but it is often very diffi-

cult to conceive of a test for all possible failure modes of

17
a chip. Also, in many cases, the prohibitive length of the
simulation is responsible for an error not being detected.
This observation usually leads to a call for more powerful
simulation engines, but the following question is worthy of
consideration. Even if the simulations were possible, would
the errors be detected given the large amount of output data
that results? Keep in mind that on long runs it is often not
practical to predict the precise result and have the com-
puter do the checking. Although longer simulations may be
necessary for other reasons, it is not clear that signif-
icant gains in circuit evaluation would be achieved. An al-
ternate approach such as an automated evaluation may be the

only practical way to catch such errors.

In some cases, specifications are misinterpreted, or some
functions are not implemented. This is a difficult area to
improve in because it is a communication problem more than a
design problem. There are at least two ways in which this
communication can be improved: having the person specifying
the design also implement it (semi-custom design); and
simply applying a more disciplined approach to writing the
specification. While both of these are being done within
BNR, the latter addresses the base problem of poor communi-
cation. The former simply limits it by containing the prob-
lem to one person, which is not possible in multi-designer

situations. A specification writing practice, which is now

18
common, is to break down each chip design into functional
blocks, provide a brief description in paragraph form, and
then to provide a point-by-point listing of every function
that the block performs, This approach insures that the

communication problems are minimized.

Modelling problems at the cell and functional socket do not
often occur, but when they do, can result in significant
problems. Typically, such problems occur when a library
cell is being used in a way that either has never been char-
acterized, or has never been used. The results can be very
serious if a bad assumption about the cell has been made on
the part of the designer. Being thorough is the key to suc-
cess. As designers push the technology limits, and therefore
the accuracy of the models, there will be more problems of
this type. Keeping both circuit and cell models up to date
requires great care, and a significant maintenance effort,
but a disciplined design approach is the best way to insure

modelling accuracy.

The final problem listed under this section has to do with
using the wrong file in the creation of the chip. While it
is true that the number of files needed to create a chip can
become large, it is also true that there are file management
systems that can be used to reduce this sort of problem.

Beyond this though, it is a good practice to do post-layout

19

simulations of a chip design to take into account the load-
ing effects of the actual tracking on the chip layout. Most
file errors will be picked up through such simulations. A
good reference on good design practices can be found in a

book by W. Fletcher. [Flew80]

2.2 CLOCK OR SIGNAL LOGICALLY INVERTED

Perhaps the most common problem during design (15% of those
reported) is the incorrect polarity of clocks and signals.
This is particularly a problem for signals travelling be-
tween large blocks of circuitry ("macros") the joint simu-
lation of which may not be practical. Consequently, manual
checking is needed to uncover such problems. However, manual
checking does remain subject to human error. Two typical
examples of signal inversion follow: one in Figure 2 on page

20, and the other in Figure 3 on page 21.

The timing of Figure 2 shows a typical example of a clock
inversion. Such a situation can ~ccur on a microprocessor
driven bus with a latch enable signal, where the rising edge
of the clock (latch enable) signal is intended to latch the
data, but the wrong polarity of flip-flop clock is used.

Another example of an inverted clock can be seen in Figure 8

20

SCHEMATIC
CLOCK >—{CK o}—> ouTtpPUT
INPUT >—{D Q
TIMING
CLOCK v
VALID
INPUT XXXXXXXXXXXXXXX XXXXXXXX
DATA

Data is being latched on the falling edge of

the clock (indicated by the 'V'). Consequently,
the 'X' (unknown) state is clocked in instead of
the data. This timing would, more typically, be
representative of one bit of a microprocessor bus.

Figqure 2. Probable Clock Inversion Example

21

SCHEMATIC
Tri-state
INPUT >-—{Bus —>
Driver OUTPUT
CONTROL
>
TIMING
DRIVING
CONTROL
TRI-STATE

Normally, tri-state drivers are only active for a
small percentage of the time. The control signal to
this one is probably inverted.

Figure 3. Probable Signal Inversion Example

22
on page 31. In this example the Case 1 timing shows a set-up
or hold violation occurring. Set-up and hold vioclations can
be symptomatic of «clock inversion. By comparison, the
timing of Figure 3 1is not obviously a problem, and indeed
may not be one. The fact that the driver is active more
than half of the time, though, is an indication that a prob-
lem may exist. Because the circuit 1is a tri-state bus
driver, it 1is 1likely that it is connected to a bus shared
with other such devices. Usually in such cases, each driver
only takes over the bus for a short period of time. There-
fore, the CONTROL signal is probably either inverted or in-
correctly defined. A discussion of design considerations

for "wired logic" is given in Fletcher.[FleWw80 pp. 251-258])

2.3 HAZARDS AND RACE CONDITIONS

Hazards and race conditions account for seven percent of the
E problems in the study, and can occur ir very subtle ways.
i Perhaps the most common error in this category is the result
f of reconvergent fan-out. Reconvergent fan-out occurs when
two signals that were generated in time alignment at one
point in the circuit arrive at the input to another part of
the circuit having followed different paths, therefore

having different delays. Hazards are those circuits that

23
involve the gating of two signals resulting in a glitch.
This does not always result in a problem in circuit opera-
tion, but 1is, in general, an undesirable effect. A race
condition occurs when two signals connected to a circuit el-
ement compete for control of the circuit. [FleW80 p. 668)
There are two kinds of races: non-critical, those that don't
affect the resulting state of the circuit; and critical

races, those that do.

2.3.1 Gating of two signals (Hazards)

Perhaps the most common error in this category is the gating
of a clock and another signal. This problem type is often
encountered when a pulse narrower than one clock period is
required, and will occur when a signal, which is generated
by a given clock, is subsequently gated with the clock.
Problems in this type of configuration are most often caused
by differential delays between the clock and the signal,
causing a glitch, and may or may not represent a hazard de-
pending on the 1logic into which they feed. [FlewW80
pp. 324-325, FriA86 pp. 198-201, MicA86 pp. 136-137] In most
cases, the circuit can be re-designed such that there is no

possible hazard, as is shown in the following examples.

24

SCHEMATIC
CLOCK > CK (o) —_| NOR |—> OUTPUT
INPUT > Q
TIMING
CLOCK v v v
INPUT
!Ql
|
\'
OUTPUT
W—glitch

The delay between the clock going low and the 'Q'
output changing state (the propagation delay of the
flip-flop) results in a momentary low-low input to
the NOR, which causes the glitch.

Figure 4. Circuit with Clock and Signal Gated

25
Figure 4, on the previous page, shows a circuit whose objec-
tive is to generate a pulse narrower than one clock period.
The width of the resulting glitch will depend upon the prop-
agation delay of the input signal through the flip-flop.
[FlewB0 pp. 472-475] The underlying assumption is that the
"CLOCK" signal is the highest speed available. This being
the case, it is probable that the output will not be clocked
by a subsequent circuit., 1If, therefore, the OUTPUT is being
used to clock or asynchronously set/reset a subsequent cir-
cuit, the glitch can easily cause the desired function to
fail, Even if the signal is going to a clocked input, the
glitch could still cause trouble if it were to coincide with
a clock edge. To demonstrate that such a circuit can be
avoided through careful design, two alternative circuits are

included.

In Figure 5 on page 26, the possibility of a narrow pulse
exists, but it will depend on the input pulse width, not on
a race condition, and the glitch is eliminated. This sol-
ution is quite acceptable if the input pulse width can be
guaranteed by another circuit. Figure 6 on page 27 is safer
still. It avoids placing additional loading on the input
signal, and is absolutely safe. It does, however, impose

significant overhead on the circuit to achieve this.

SCHEMATIC

CLOCK >——{CK Q
NOR
INPUT > D

26

———> OUTPUT

ol
]

TIMING

CLOCK A v

INPUT

IQ'

OUTPUT

This circuit is a suitable alternative if the
integrity of the input signal can be relied upon.

Figure 5. Gating of Clock and Signal (Alternative #1)

27

SCHEMATIC

INV

CLOCK > CK Q1 CK Q2

INPUT > D1 o1 D2 02 || AND |—> OUTPUT

TIMING

CLOCK v v v

INPUT

OUTPUT

This circuit does not rely on the INPUT signal being
well controlled. OUTPUT pulse width equal CLOCK low time.

Figure 6. Gating of Clock and Signal (Alternative #2)

28
2.3.2 Race Conditions

An example of a race condition is shown in Figure 7 on page
29. The two timing diagrams show the effect on the output
of the reset being removed slightly after the activating
clock edge (Case 1), or slightly before (Case 2). Assuming
the desired result in these circuits is for the data to be
latched (which might not always be the case), Case 1 repres-
ents a "critical race," and Case 2 represents a "non-
critical race." Note that it 1is possible for the same
design, and even the same physical circuit, to exhibit both
behaviors depending on the temperature voltage and process-
ing of the device. So it is not always possible to determine

whether a race will be critical or non-critical.

SCHEMATIC
CLOCK >—{CK Ql—> OUTPUT
INPUT >—D 0
R
RESET >

TIMING (Case 1) CRITICAL RACE

1 1 1
CLOCK Y Y v I

INPUT ?
A
RESET RELEASED JUST
RESET AFTER CLOCK EDGE.
OUTPUT

TIMING (Case 2) NON-CRITICAL RACE

1 1
CLOCK | Y Y v l

INPUT ?
v
RESET RELEASED JUST
RESET BEFORE CLOCK EDGE.
OUTPUT

Figure 7. Circuit with a Clock/Reset Race

29

