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The matching polyhedron theorem is proved non-algorith-
‘ .mically and it is shown that the general matching problem has
a polynomially bounded algorithm.
- As applications,.the theorem is used to derive the
Chipese postman polyhedroy and the convex’%one of incidence
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vectors of circuits of a graph. ./
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) ' Introduction

4

. -
Eg@ROQhCTION"
.’ In its simplest form, in which case it is\called a

l-matching, 'a matching of a graph is a subset of the edges
¢

such that each vertex is an end of precisely one of the matching

edges. Hence the/déme: a matching matches‘the vertices in pairs.
Given costs associated with the edgés of the,gfaph, the matching
problem is to find an optimum (minimum or maximum) cosprmatching,
] » . :
where the cost of a matching is the sum of the costs of the N
matching edges. For example, given n proéessors and n tasks,
with costs aséociated with a particular processor .executing a
particular task, the problem of assigning exactly one task to

‘

each processor, in such a way as to minimize total cost, is a

“ é

l-matching problem.

It will be obvious, once we define it, that the matching
. ! . Y .

-

problem is an integer linear proéramming (ILP) problem. Now we

do not have an efficient algorithm to solve ILP problems in
general. One of thevreagons we do not have such an algorithm

is that we know no "good" criterioﬁ for'optimality of feasible
solutions to & general ILP prob{em. Such a criterion is necessary
for an efficient algorithm since the algorithm must be=able to

‘decide, in an efficient manner, when to stop. However, the

matcﬁzng problem does have an efficient algorithm, for which

i
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5

the stopping rule comes from linear programming'(LP) duality

theory. Every ILP problem with*feasible solution set § is

equivalent to the LP problem with the same objective fumction

° and with the convex hull of § as‘ité,feasibility region. This

is because every7vertex (or extreme point% of the convex hull
of S is an element of S, and if an LP problem has an optimal

solution, then it has a vertex optimal solution. What is special

N
. . \ .
about the matching problem is that we know an explicit description

of the convex hull of its feasible solution set in té!ms of

linear inequalities. This result is a consequence of the so-

-cglled bloséoﬁ algorithﬁ (announged by Edmonds and Johnson [11])

. o
and it is the main goal of this dissertatianhﬁplprove the result
' l

non-algorithmically:

)
Let us illustrate some of the above ideas on the example
AN .

of l-matching. The feasible solution set M of a 1-hatching.
. R
problem on a graph G with vertex-set V and edge-seg E is the
set of (0,1)-valued‘vec£ors X, indexed by E, satisfying
I(x,: e is incident with v) =1 for ve{. '

" Néw the feasible solution set of any ILP problem is
the set of integer-valued vectors éatisfying a fipite system
L of gnequalities..There are ILP problems having the property
’éhet the convex hyll of the feasible solution set is precisely

the set of real-valued vectors satisfying L, in which case an

A " v a

O

.
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optimality criterion based on LP.duality is immediately at
hand. We show this is not the case for the l-matching problem.

Consider the graph

v, ‘(" V‘I
< 4///£L’/”’
Va '
4 25 Y% . e'
2 -~
Y, fe v

-

and let M' be the set of incidence vectors of its l-matchings.

For iﬁstance, M' contains (0,0,0,1,1,130,0,0). and (0,0,1,0,1,0,0,1,0).
* The claim is thaf the convex hull of M' is not the set P of

‘ '

nonnegative real-valued vectors satisfying J.1. Let x* be the

vertex of P satisfying the equations I.1 and xg = x*% = xz = 0.

4 %5 %
Then x* + x* = x* + X*¥ = 1, 80 x* = X* . But x*x + x* = 1, so
e, e, e Teg L e, eg
yz = xk = x* = % and similarly x: = x: = xé = k. Therefore
1 %2 %3 7 % % '

¢
¢+ x*¢M' and,P is not the convex hull of M'.

It is not hard to see that any l-matching of the above

e, . This

graph must include at least gng of the edges e 6

a’ es)

is because the three (note that three is an odd number) vertices

Vi 92, v3‘cannot all be incident with matching edges froq
the set [el, €y e3}. Now if x is in the convex hull of M',
that is, x is a convex combination’of incidenCe‘vectorh of
l-matchings, then of course x_++x_+ x_> 1, an inequality

eh 85 86
not satisfied by the x* defined above. "

SRS SV S Y
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»
The above argument can be generalized (and will be -
in section 2.2) to show that any x in the convex hull of M
must satisfy

Z(xe: e islincident with preci;ely one-veT) > 1 fgr subsets

T of V such that lTl is odd. . 7
That the convex hull of M is precisely the set of nonnegatige
real-valued vectors satisf;ing I.1 and I.2 will be proved in
section 2,2,

) What does all tﬁis have to do with optimality criteria?
Given a l-matching éroblem with cost vector c, indeﬁed by the
edge-set, we will have shown that this problem is equivalent
to the LP problem . £

minimi;e c.x subject to x > 0, I.l and’I.Z.

We know from LP duality theory’that optimal solutions to problem
I.3 and iés dual are related Eprough compiementary slackness.
Thus if our algorithm detects primal and dual feasible solutions
for which complementary slackness holds, it can stop.

., Ts such an optimality criterion "good"? After all, the
number of inequalities 1.2 is exponegtial in |v|, so the number
of dual varigbles 18 exponential in [v[, checking complementary
slackness ma; require verifying an exponential number of

inequalities, andqan algorithm that requires an amount qf work:

that i¢ exponential in the problem's input size is not considered

g
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8

to be efficient. However, the number of dual constraints, thch
is the‘number of primal variables, is polynomial in the input’,
sizé, and we know that if an LP problem has an optimal solution,
then it hag a vertex optimal golution in which the number of
variables with value strictly positive does not exceed the

~ number of constraints. Thus if\our algorithm maintains vertex
primal and dual feasible solutions, i£ can cbeck cpmplementary
slacknqgs in a pbl?nomial amount of work. The aléoritﬁm also
has a good .optimality criterion iglit maiﬁtaing a vertex dual
feasible solutibn and a primal solgfion that is not necessaril;'
feasibie, but such that the two_solutions satisfy complementary
slackness, for~then it.can stop as -soon as the primal solqtion/
becomes feasible; this is the optimality criterion used by

the blossom algorithm. . \ "

v

?

Thé.subjéct,'calléd polyhedral combina%orics, of.
exploiting LP:duality theory to obtain optimality criteria for
ILP problems is the §fimary motivation of this dissertation,
and is dealt with more technically in section 1.5. (The first
four sectiohs of chapter 1 consist of standard definitions

“wand theorems without proofs.) Tﬁe last section of the first
chapier is rather important because it contains the basic tools
used to ;rove the polyhedral results that are fhé conteﬂk 6} .

. .

the subsequent chapters. b o

e o oy - - JURU—— — £ o = e
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In the next chapter, which is the meat of this dissertation,
first the matching problem is introduced and then a proof is

given of the convex hull result for the special case of l-matching.

L4 -

P

~The subsequent sectibns consist of successive generalizatlons

of this special case all the way up to the original,problem,

At each staée tﬁe previous convex hull result is used, together
with tﬁe convex hull characterizations of seétioq 1.6, to prove
the convex hull rgsultvfor the more general problem. Since these
proofs iﬁvolve polynomially reducing the more general problem

to the mpre special one, and since Cﬁnningham and Marsh (see

Marsh [25]) have exhibited a polynomial algorithm for the

matcﬁing problem of section 2.3, it is also shown, in section

21

A 2.8, that)the most general matching problem has a polynomial

algorithm.

Section 3.1 presents the proof of Edmond; and Johnson
[12} of their Chfmese postman polyhedron theorem. This proof
is based on the main result of chapter 2. A postman tour in a
graph is a circuit which traverses every edge at least once,
and the Chinese postman problem is to find a minimum cost postman
tour, given nonnegative costs associateq with each edge. With
each postman tour we can associate a nonnegative integer-valued

vector, indefed by the edge-set of the graph, wihich’ counts the ‘

number of times each edge is traversed superfluously (more

1

)8
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4

-

than once). The Chinese postﬁgn polyhgdron is 'the convex hull
of such vectors. ’

, . The last secgion gives a'matching-theorefical proof
of a theon@m}’é;e to Seymour [28], that provides a finife

system of linear inequalities determining tﬁe set of nonn%gative

3
linear combinations of incidence vectors of circuits of a graph.

e

o3

&




- . Chagter 1

i ’ LR

CHAPTER 1 - PRELIMINARIES

%,
t ' ‘ , :
) In which definitions and notation are introduced and

»

necessary results from the thebries of graphs, convexity and
. linear programming are stated without proof, in which the

motivation behind the main theorem of the dissertation is

discussed in the 'sect:io‘n on polyhedral combj.”torics, and in

o y which the last section gives two characterizations of ‘convex
‘ ¢
< hulls that previde the basic framework for subsequent proofs.

1
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Section 1.l - General Notation

It is assumed that the reader is familiar with the

4 .
meanings and elementary properties of the following symbols
a‘Qd concepts: § = {x: P(x%)} = the set of all x satisfying a

given condition P; x€S, x¢S; SC T, T2 s; ST, sUT,

S-T = (x€S: xfT}; |S| = the cardinal of S; x =y (mod 2z); - -

4o, - |x| = the absolute value of x ' (xi: i€I); the empty
set §; T =8-Twhen T C S and S is obvious from context.

R and Z respectively denote the sets of real and integer

numbers. If X is either of thése symbols, then 2(+ = {x€X: x‘z 0}
and, for any set §, §S denotes the set of all functions (or
vectors if IS] < @) defined on S and taking values in ¥;
similarly for {O,I]S.

A vector X with index set I is an ];I-tuple X = (xi: i€I);
we shall also use the function notation _)_:(EI where X is the
range of possible values for the coordinates of x. If x and y

are both indexed by I, then x < y means that Xy < Yy for @%
I
(o,

i€I. The incidence vector of a set J € I'is the vector x€

defined by x, = I-if and only if i€J; when it is obvious what

i

is meant we do not distinguish between a set and its incidence
o

vector., The zero vector is written 0, since the index set will

always be obvious from context. For the same reason we do not

1 A
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. T distinguish between row and column vectors. For J € I, we use
the abbreviation x(J) to denote.nZ(xi: i€J). For 5(_)51, z()_(I and

s€X, the dot product is x.y = Z(,xiyi: 1€I) € X and the scalar

- T 1

product is sx = (sxi; i€I) € X" . .

A'matrix with entries from X, rows indexed by I and

IxJ

coltams indexed by J is denoted by A = (aij) € X7, with the

b

usual matfix addition and multiplication.

The minimum and maximum of a set SC X are respectively

written min(x: x€8) and max(x: x€S), with the convention that

min(x: x€@) = 4+ and max(x: x€@) = 0.

2 I Ve e e s




-,

Section 1.2

14
!

Section 1.2 - Graph Theory

<

The single'result and most pf the definitions of this
section can be found in Bondy and Mufef {4] and Edmonds and
Johnson [11].

A graph G = (V,E) consists of a finite non-empty set
V of vertices together with a éﬁéscribed set E of unérder%d
pairs of elements of V. Each such pair e = (u,v) € E is called
an edge of G; we say that e joins u and v and is incident with
each of its ends u and v. An edge of the form e = zv,v) is
called a loop. Given any graph H, the vertex-set and edge-set

*

of H are respectively denoted by V(H) and E(H). The degree of

of a vertex is the number of edges incident with it.

t
A subgraph of G is a graph having all of its vertices

and edges in G, and a spanning subgraph of G is a subgraph
containing all the vertices of G.
A path from Vo to Vo in a graph G is an alternating.

v_ of distinct vertices and edges

sequence v.,e . ,V.,...,V e
1 o1y ’'n=-1>"n’ 'n

such that each e, for 1 < i < n, joins Vil and vy A sequence

with the same properties, except that §0 =V is called a
circuit, which is an even circuit or .an odd circuit according

to whether n (the number of edges in the circuit) is even or

odd.

«

vy

T
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o
A graph G is connected if there exists a path from u
to v for every pair of vertices u and v of G. A maximal
connectgd subgraph of G is called a éomgonent of G. A component

consisting of a single vertex is called an isolated vertex.

The coboundary of S<C V, denoted by GG(S), is the set
of all edges having exactly one endlin S. If S ={v) is a
singleton; 6G({v}) is abbreviated to GG(V). The symbol QGkS)
denotes the set of all edges having both ends in S, and YG([V})
is abbreviated to YGSV) = the set of loops incident with v. ‘
Tﬁé subscript G is suppressed whenever this does not result
in ambiguities.

A graph is bipartite if its vertex-set V can be

partitioned into two subssxs V1 and V, such that Y(Vl) and

2
Y(VZ) are both empty, or equtﬂ%lently, 6(V1) = 6(V2) = the
pgdge-set of the graph. There follows the promised single result.
Theorem: A graph is bipartite if and only if all its circuits
are even. ¢

We now speéialize and generalize tﬁe definition of a
graph in various ways. Unless otherwise indicated, the above
definitions either extend naturally to, or will not be needed
on these different classes of gréphs.

A simple graph is é graph in which the vertices of any

pair defining an edge are distinct, that isy a simple graph is

a graph with no loops.
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A directed graph is a graph in which the vertex pairs

(u,v) is a (directed) edge

defining edges gfe ordered. If e
. ,

.of a directed graph, Qéxﬁay that u is the.tail of e, v is the

' o -
/// head of e,\ggg_zfite u =t(e), V
{

h(e). Here we partition 6(S)

irto § (S) = (e€E: t(e)ssg h(e)¢S}, 6+(S) = {e€E: h(e)€S, t(e)dS].

IS B / .
A generalized graph is a graph in which some edges,

called lobes, may have’only one end. A simple generalized graph

is a generalized graph with no loops.

A bidirected graph‘is a generalized graph .in which each

edge has a direction assééiated with each vertex with which it
is inciden;. Thus each edge of a bidirected graph has either
one or two jﬁot necessarily disti;ct) ends, and each of these
ends is either a tail end or a head end. Here § aﬁd‘y are
defined as for graphs, 6+(S) (respectively § (S)) is the subset
of §5§(S) consistiﬁg of those edges whose single end in S is a l 0
head end (Trespectively taiL~end), and Y+(v) (respectivelyyv-(v))
is the set of loops having two head ends.(respectively tail
ends) at v, .
Ve represent any type of graph by means of its incidence
matrix, which we define only for bidirected graphs, the other
. ’ definitions being obvious spec}alizations. Thus the incidence
matrix of a Pidirecfed graph G ==‘(V,E) is A = (ave) € [-2,-1,0,1,2}VXE

where &, = -2,-1,0,1,2 if respectively, e is a loop with two
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" tail ends at v, e is not a loop and has one tail end.at.v,‘e
%s not incident with v, e is not a loop and has one head endu
{ at v, e is a loop with two head end; %t v. The attentive reader
will have noticed that this r;presentation.does not allow for
loops having oﬂe tail end and one head end; in dur application '
of bidirected graphs it can be assd@ed, as wi\&\fe)explained,

v that “such ldops do not exist. Clearfy Z(lavek veV) 1is equal

[ to 1 or 2 according to whether e is a lobe or not a lobe.
Another, intuitively more useful, representation of 4'
graphs is by means of a picture in which vertices, edges and
directions: are respectively represented by means of points,
lines and arrows. r

The following incidence matri¥X and picture represent - '

the same bidirected graph.

e & & ¢ e 6 7 8 ,

T-1 -2 -1 1 0 0 0 0 | vy

- A= 0 0. -1 0 2 1 -1 1 v,
0 0 0 -1 0 0 0 1 v,
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Section 1.3 - Convexity

The definitions of this section are standard, unless
otherwise indicated, and proofs of the results can be found

in Griinb aum [18] or Stoer and Witzgall [3d].

7

. n n '
. Given a set SC R, x€R iﬁa nonnegative linear
-

combination of elements of S if there exist xl,x ,l..,x €S and
RASLOR U LS At y 2.2 z
al,az,...,ak§§+ such that

x = Z(ai§i: 1 <1i<k).

If, in addition, I(e;: 1 <4 <k) =1, the vector x is said to

be a convex combination of elements of S. The set S is said

to be convex if ité@ontaius all convex combinations of its
elements. The convex come of SC En’ denoted by CC(S), is the
set of all nonnegative linear combinations of elements of 'S,
.and ;he éonvex hull of S, denoted by CH(S), is the set of all
con§ex combinations of elements of S. It is not hard to see

that convex cones and convex hulls are convex’

An extreme point of a convex 'set S is an x€S that cannot

be written as a convex combination of more than one element of

-

S, that is, x = x is the only representation of x as a convex
comﬁ}ﬂation of elemengs of S. :
+

We are interegted here in a very gpecial kind of convex

set, namely one thdt is She set of feasible solutions to a




W
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1.3.2

1.3.3

1.3.4
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finite system of linear inequalities (which may include equations
since any equation can be written as two inequalities), which
we call a polyhedron. This terminology is not completely

standard: some authors, for example Gale [16], use the terms

_polygon, polyhedron and polytope when n = 2,‘n'= 3 and n§>§i\

respectively,
) A'vertéx of a polyhedron P is an x€P that is the unique
golution to a system of eqﬁafions obtained from the inequalities
determining P'Qy settiné some of them to equality:

Theorem: If PC En is a polyhedron, then 565“ is an extreme

-

point of P if and only if x is a vertex of P.

CoréIlarz: Given S C En, if CH(S) is a polyhedron, then every
vertex of CH(S) is an element of S.

Theorem: A bounded convex set is the é§nvex hull of its extreme
péiﬁts.

Corolléfz: A bounded polyhedron is the convex hull of its

vertices.
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Section 1.4 - Linear Programming

Some standard references on linear programming are
Dantzig [6], Gale [16] and Luenberger [24].

The llneqr progqanmiﬁg*problem or LP problem is to

. n
optimize a lingmer objective function c¢.x, where c€R 'is the

cost vector and Efgn is the vector of variables, over a polyhedron

contained in gn, also. called the feasibility region.

Since maximizing a linear objective function is equivalent

to minimizing its negative, we can write any LP problem as:

General LP: min(c.Xx: X€P) where PC Bn is a polyhedron.

Any x€P is a feasible solution and Xx*€P is an optimal

solution if c.x* < c.x for all x€P. The LP is said to be

infeasible if P = @ and unbounded if, given any r€R, there

3

exists x€P such that c.x<r. ’

There follow two well-known LP results about polyhedral

vertices. p

Theorem: If 1.4.1 has an optimal solution, then it has an

optimal solution that is a‘vertex of P.

fheorem; Given any polyhedron P C Bn, x* is a vertex of P if

and only if there is a vector E(Bn such that x* is the unique

optimal solution to the LP problem min(c.x: x€P).
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. The problem of integer linear programming (ILP) is to

minimize a linear objective function c¢.x subject to the constrajnts
-7

§€gn and x satisfies a finite system of linear inequalities

in which all thé coefficients and constant terms are integers.
It is not hard to see that, by algebraic manipulation of such
inequalities, any ILP problem can be written in the form:

General ILP: min(c.x: 0 < x < u, Ax = b, Esgn) wher gegn

ue(z, U (4=, aez™", bez".

We now- summarize linear programming duality theory.

Although not needed to prove our subsequent results, it is the
motivation for these results, for it explains why it is of interest
to know the convex hull, in terms of linear inequalities, of
the set of feasible solutions to an ILP.

By algebraic manipulation of inequalities, any LP

problem can be written as:

3

mxn m

, ber"™.

Primal LP: min(c.x: x > 0, Ax = b) where Eegn, A¢R

The dual to this LP problem is:

Dual LP: max(y.b: yA < ¢).

The following theorems relate the objective function

-

values of primal feasible solutions and dual feasible solutioms,

also giving necessary and sufficient conditions for such

solutions to be optimal.
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Weak LP Duality Theorem: If x and y are respectively primal

and dual feasible, then c.x > y.b. Furthermore, if one of the

two problems is umbounded, then the other is infeasible.

. Strong LP Duality Theorem: If the primal LP is feasible and

bounded, then there is an optimal primal solution x* and an
optimal dual solugion y* such that c.x* = y%.b.

Complementary Slackness Theorem: A primal feasible solution

x* and a dual feasible solution y* are both optimal if and

only if Z(yqaiéz 1<i<m)=c, for each j (1 < j < n) such

]
that xg > 0.
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Section 1.5 - Polyhedral Combinatorics

Consider an ILP of the form: |
€
min(c.x: x€S) where SC Zn.

Clearly any finite algorithm, in particular any efficient

algorithm, for sych an ILP problem must have a stopping rule

or optiﬁality criterion., This necessary ingreqfént for a "goéd"
algorithm is often hard to come by for ILP problems, but always
exists for LP problems %g;tﬁg/;orm.of the duality theorems
1.4.7, 1.4.8 and 1.4.9£}Polyhedra1 combinatorics is the subject
of exploiting.LP duality theory to find ''good" o?timality
criteria for ILP problems.

This requires finding an explicit descripéion of a
finite system of linear inequalities which determine a polyhedron
P(S) having the property that 1.5.1 is equivalent to
min(c.x: x€P(S), x is a vertex of P(S) if the LP min(c.x: §€P($))

-

has an optimal solution).

>

:It should be noted that, in view of theorem 1.4.2, the additional

condition that x be a vertex of P(S), when an optimal solution
exists, does not change the optimal objective value.

There may be more than one such polyhedron for a given

4
S, but this dissertation deals with convex hulls of sets of
5

feasible solutions to matching problems, so we now show that

convex hulls have the above property.
! : ‘.
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Thegorem: Given S C _gn, if CH(S) is a polyhedron; Ehénﬁblem‘s
. N ’ T
1.5.1 and 1.5.2, with P(S) = CH(S), are equivalent.
Proof: Since S = @ if and only if CH(S) = }, it is immediate
that 1.5.1 is infeasible if and only 1;/1(5.2 is infeasible.
/
Since S\C CH(S}, it is also clear that if 1.5.1 is
N ¢ v

-

unbounded, ther/ so is 1.5.2. Now suppose 1.5.2 is unbounded,

N

let r€R be givep, and fin‘d y = Z(aizi: 1 <i<k) , a convex
combination’ of elements of S, such that c.y < r. Since
Z(e;: 1 <1 <k) =1, we then have

! min‘(g.gc_i: 1<1i<k)< 2(0!15.51: 1<1<Kk) =‘_g.1 <r,

so 1,5.1 is also unbounded. .

I1f both problems dte Gfeasible and bounded, let x* be
an optimal solution to ‘]’..5.1 and let y* be a verfex- optimal
solu‘tion to 1.5.2. Since SC CH(S), it follows that c.y* < c.x*.
Invoking 1.3.2, wh;éﬁ says that every vertex of CH(S) is an
element of S, we also have y*€S§, s6 c.x* < c.y*. QED

Some ILP problems (notably network flow ‘problet'ns) are
equivale;lt; to the corresponding LP problem obtained by droppiing
the integrality constraint ﬁf_gn, so that optimality'criteria; .

‘

derived from duality theory ‘are immediately at hand. If an

*ILP problem does not have. this property we say that it is genuine.

There is a remarkably close correlation between thgse

. o ’
ILP problems for which we know efficient algorithms and those
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for which we explicitly know a polyh;dron such that 1.5.1 and
1.5.2 are equivalept. "Good" combinatorial algorithms can Pften
be used to prove‘polyheQra} results ahd, conversely, polyhedral
combinatoifcs often inspires, or at least motivates; efficient
e! solutions :0,a1gorithmic problems. Difficulty in obtaining
polyhedral results also helps to explain why related algoritﬁ;ic
3 problems are difficult.

Recenﬁi;'(1980); Grbtschei, Lovhsz and Schrijver [17]
"exhibited an even closer relationship Getween efficient (having
co&butation bounds‘polynomial in the "input size”3 algorithms
for ILP problems and convex hullg of feasibility sets of ;hese
problems. Their result is based on the eIlipsoid.method used,
by Khachian [21] (see also Gics and Lovhasz [15]) in Hls polynomially

bounded algorithm for limear programming. Before stating the

. . . L n
theorem we make two definitions.‘leen a convex set SC R, the

separation pfoblem for S is the problem of deciding whether
or not a giv;n x is in §, and ifizjs, finding an inequality
‘satisfied by all the elements of S but not by x. A convex body
‘is a bounded convex.set contained in En and containiﬁg an ‘
n-dimensional bail. !
1.5.4 Theorem: Let K be a élass of convex bodies. There is a p;}ynomial
algbrithm to -solve the sgparation problem for the members of K

_ if and only if there is a polynomial algorfthm to solve the

problem of optimizing any linear objective function over any

Hfj:) ‘member of.K. , ) ' '
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To relate the above theorem to polyhedral combinatorics,
let K be the class of convex hulls of feasibility sets of
4nstances of an ILP problem. If it so happens that each mémber
of K is a convex body, then the theorem says there is a polynomial
algorithm to solve the ILP problem if and only if there is a
polynomial algorithm to solvg tae separation problem for the
members of K. . ‘ f

In this respect, it is interest ﬁé/to note that in 1979
Padberg and Rao [26] effic}ently\solvgd the separation problem
for convex hulls of b-matchings (see section 2.3 for a definition
of b-matchiqgs, which generalize l-matchings). Although a
polynomial algorithm for the l-matching problem, as an optimization
pfoblem, has been available since 1965 (Edmonds [8]), the
b-matching problem was not polynomially solqu until 1979

(Cunningham and Marsh - see Marsh [25]).

PEs

T et
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Section 1.6 - Deriving Convex Hulls

In this section we prove two theorems about convex
hulls of ILP feasible solution sets that provide the framework
for many of our subsequent proofs. These theorems rely on 1.3.4,
which says that a bounded polyhedron is the convex hull of its
vertices.
1.6.1 Theorem: If SC Zn is finitey/éken P = CH(S) provided
(1) P is a bounded polyhédron in gn,
(2) sC p, .
(3) every vertex of P is an element of S.
’ Ezgéﬁz Condytions (1) and (2) guarantee that any convex éombination
of elements of S is an element of P; so CH(S) € P. Fo;*tﬁe reverse
inclusion, by condit;on (1) any x€P is a convex combination of
vertices of P, and (3) then guaranfees that x€CH(S). QED
In our applications of this theorem, (1) will be self-
-evident, (2) will be feadily‘verifiable, but showing (3) will
often be non-trivial. Typically we shall do it by reducing the
ILP problem at hand to an ILP problem for which the convex
hull result.has already been proved. Then condition (3) will

have a more manageable form as in the next theorem.

i,
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Theorem: Let S C En be finite and let S' E.Zm be such that, N
for each E(Bn, there exists E'(Bm with min(c.x: x€3) equivalent
to min(c'.y: y€S'). If P' = CH(S'), then P = CH(S) provided
(1') P is a bounded polyhedron in En’
(2') sc e, |
(3') for gvery vertex x* of P and for every 2(5“, there
exists y*€P' such that c.x* = ¢'.y*, where E'egm is

as in the hypotheses.

Proof: In view of.the preceding theorem, it suffices to show

that, under the given hypotheses, condition (3') implies

condition (3). Given a vertex x* of P, invoke theorem 1.4.3

to find Eegn such that x* is the unique optimal solution to

min(c.x: zeﬁ), and the hypotheses to find E'Egm such that the

two ILP problems min(c.x: x€5) ;ﬁd min(g'.z; y€S') are equivalent.

By condition (3'), we aléo have a y*€P' such that c.x* = ¢', y*,
Since P' = CH(S') # @, it follows that S' # @ and both

problems are feasible. Since S is finite, we also have that

both problems are bounded. Therefore they have optimal splutions

x'€S5S and y'€S' such 5252.3.5' =¢'.y'. But SC P, so the optimality

\
"~

of x* ylelds c.x* < c.x'. By theorem 1.5.3, y' is an optimal

solution to min(c'.y: y€P'), whence c'.y' < c'.y*. Therefore
L.x* < c.x! =cl.y' <.y = coxk,

and in fact c.x* = c¢.x'. By the uniqueness of x*, it follows

that x* = x'€S and condition (3) of theorem 1.6.1 is proved. QEﬁ
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CHAPTER 2 - MATCHING POLYHEDRA

In‘which the matching problem and the main theorem of
this dissertation, the matching polyhedron theorem, are stated
and explained, in which the stratégy for proving this theorem
is first outlined and then executed, to wit the theorem is
proved for a special case and then successively generalized
by reducing a more general matching problem to one for which
the theorem has already been proved, and finally in which some
comments are made regarding the existence of a polynomial
algorithm for the most general matching problem; the reductions

we use are taken from the theory of network flows.
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> Section 2.1 - The Matching Problem

An ILP problem in the general form l.4.4 is called a
matching prgblem whenever the constraint matrix A is the
incidence matrix of a pidirected graph G = (V,E).

Matching Problem: minimize c.x subject to

E
z

I'%

%

<u

1%

=5
where ceRE, 3€(§+U (+=1)", bez and A = (a,,) € (-2,-1,0,1,2)"*E
satisfies Z(Iavel: veV) < 2 for each e€E.
Since we shall be considering this problem more from
a graph-theoretical than from a linear algebra point of view,
it is convenient to write 2.1.4 as
26T (W) - x(67 (W) + 2x(T (V) - 25 (V) = b for veV.,
Thus a matching (the use of this term will be explained
in the next section) of a bidirected graph G = (V,E) is an
assignment of nonmegative integegs X, to the edges of G such
that no X, igs greater than the capacit u, of edge e, and the
demand bv at each vertex v is satisfied, in the sense that edge
e contributes -2xe, "X 0, x, 2xe to the demand at v according

e

to whether e has 2 tails, 1 tail, 0 ends, 1 head, 2 heads at v.

.The terms "capacity" and “demand" come from network flow problems

e 24 mtmmn s b e o e s .- [P
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which are not genuine ILP problems, and which constitute a sub-
-class of the class of matching problems. The cost of a matching,
with respect to a given cost vector EegE, is the sum, overlefEt

1 of costs <. taken LI timés on each édge e, and the matching

problem is to find a minimum cost or optimal matching.

’

It is now clear why we can assume that a bidirected
graph has no directed loops (loops with one tail and one head),
which would appear as a column of zeroces in the incidence matrix.
Since a directed loop e makes no contribution to the demand
at the verté% v with which it is incident, if c, < 0 then the
problem is unbounded if and only if it is feasible, while if
o > 0 and if the problem has an optimal solution, ghen it has
an optimal solution in which x, = 0.

We nog‘state, in graph-theorétical language, the matching
polyhedron theorem announced by Edmonds and éohnson [11].

2.1.6 Theorem: The convex hull of matchings of a bidirected G = (V,E)
with capacities g€(§+lj [+°°])E énd demands Eegv, tgat is, of
feasible solutions to the matching problem 2.1.1, is the
polyhedron MP(G,b,u) of vectors 5655 satisfying 2.1.3, 2.1.5 and

2.1.7 x(86(T)) - 2x(F) > - u(F) for T and F such that TC V,

FC 6(T), b(T) + u(F) is an odd integer.

Strategy of the Proof: Note that MP(G,b,u) need not be bounded :

for example, if a vertex v Pas a loop e with 2 heads and a
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loop f with 2 tails, if u, = up = +o and if x€MP(G,b,u), then

f

X, and X, can be increased without bound, by the same amount,

without violating the demand constraint 2.1.5 for v; the inequalities
2.1.7 remain satisfied because §(T) does not contain any loops.
However, the special cases of the theorem that we consider in’

sections 2.2 to 2.6 all involve bounded polyhedra, so we may

Y

invoke theorems 1.6.1 (in the first proof in section 2.2).and
4
1.6.2, Conditions (1) and (l') of these theorems will always

[

be obvious. .
LI A
k In order not to have ta check conditions (2) and (2')
over and over again, we now show that any feasible solution X
A .
to problem 2.1.1 is an element of MP(G,b,u), for which it

suffices to check that x satisfies the inequalities 2.1.7. From

2.1.5, we have, for each veT

1

2.1.8 x(8T(v)) - 5(6;(v)) b, (mod 2).
Summing the congruences 2.1.8 over veT gives

2.1.9  b(T) = S(x(6 (v)): v€T) - T(x(8 (v)): veT) (mod 2),
Now if e€y(T) and e is not a loop, then X, appears.in the right-
-hand side of 2.1.9 with a coefficient of -2, 0 or 2 according
to whether e has two tail ends; one tail and one head end, or

 J

two head ends. Therefore 2.1.9 implies

b(T) = (87 (1) ~ x(67 (1)) (mod 2), )
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whence . 5(5(1‘)5 b(T) (mod 2),
2D + u(P) = b(T) + u(F) (mod 2),
x(8(T)) + u(F) is an odd integer.
Now F C §(T) a;ld iég, so x(8(T)) > x(F), and x < u, s0

u(F) > x(F), from which

Y

x(8(T)) + u(F) > 2x(F).

«By 2.1.10, the two sides of 2,1.1l1 have opposite parities, so

in fact x(8(T)) + u(F) > 1 + 2x(F), ’
which is equivalent to 2.1.7.

It should be noted that there is an inequality 2.1.7
for T and F only when u, < 4o for each e€F, becauwse of the
pestriétion that b(T) + u(F) must be an odd integer. In many
of:the special cases we consider, u, = += for ail edges e, so
the inequalities 2.1.7 have the simpler form

x(8(T)) > 1 for TC V such that b(T) is an odd integer,
since F is always empty. ' . .

To complete the proof of the main theorem 2.1.6: we
go thgough the following ;teps: in section 2.2 verify condition
(3) of theorem 1.6.1‘fof the special case of l-matching, that
is, we show that evefy vertex of the l-matching polyhedron is

a l-matching; in each of sections 2.3 to 2.6, we define a more

general match{ng problem and polyhedron P, and Verify condition

(3') of theorem 1.6,2, that is, we reduce the more general




-
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pfoble& to an equivalent instance of thg matching of the
preceding section, for which wé/wiil aiready know the convex
hull P' in terms of linear inéqualities, and then given a
Vertex x* of P, we will exhibit y*¢P' such that x* and y* have
equal objlctive values. The non-trivial computation_}n this
respect will be to shHow that y* satisfies the inequalities
corresponding to 2.1.7. In the last step of the proof, in
‘section 2.7, we use a different method since for the first

time the polyhedron will be unbounded.
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Sectijon 2.2 - The 1-Matching Polyhedron

A l-matching of a simpleﬁgraph G = (V,E) is a subset
M of E such that each vertex of G is incident with precisely
one element of M, that is; the demand is 1 at each vertex.
Since.the constraint matrix for the l-matching problem, the
problem of finding a minimum cost l-matching with respect to
a given cost vector E(EE, is the nonnegative incidence matrix
of a simple graph, each edge has an implicit capacity of 1.

1-Matching Problem: minimize c.x subject to

x(6(v)) =1 for vev
where ggBE and G = (V,E) is a simple graph.
The constraint 2.2,2 could of course be replaced by

E({O,I}E. It is now clear how the term matching came to be:

a l-matching matches the vertices of G in pairs (in particular,

for G to h;ve a l-matching, [VI must be even), and matchings

of bidirected'graphs are generalizations‘df simple graph l-matchings.
What we are Ealling a l-matching is qften called a

perfect l-matching, in order to distinguish it from those subsets

M of E having the property that each vertex of G is incident

with at most one element of M, which corresponds to the demand

constraints x(8(v)) <1 for vev.
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Since all the demand constraints in this chapter are equalities,
we dispense with the adjective "perfect'". No generality is lost
in this respect, since any imperfect matching problem can be
transformed into an equivalent perfect matching problem by
adjoining zero cost lobes to every vertex having an inequality
demand constraint,

Turning now to the convex hull of feasible solutions
to problem 2.2.1, a natural first try for the convex hull of
feasible solutions to any ILP problem is to simply drop the
integrality constraints, which is equivalent to supposing that
the problem is not genuine. Given any simple graph G = (V,E),
let us therefore investigate what are the Vertjces of

P(G) = [X€RL: X(5(v)) =1 for vev).

Given a vertex x* of P(G), first erase from G all the
edgeg sron which xg = 0. Clearly x* is the unique element of
P(C) taking the value O on all the erased edges (by the definition
of a polyhedral veréex).

In the reéulning graph, if e is such that xg = 1, then
certainly e and its two ends form a component.

Consider a component C on which 0 < x* < 1., Every vertex
of C has degree at least 2, so C contains at least one circuit.
Let B = &min(xz: e€E(C))

and note that § > 0.




Y N e —

Section.2.2
. ©

37

Supmose that C contains an even circuit .
Vi5€15V9s€p5 s Vy €8y 5V
E
and define x'€R

xz qvife#e for 1 < i < 2n,

]
1)

x' = x* + B, if e for i odd, 1 < i é 2n,
Xk - B, if e = e, for i even, 1 < i < 2n.

Since x' > 0 by definition of §,
X' (6(v)) = x*(6(v)) =1 for v # v:,‘
x'(8(vy)) = x*(4(vy)) + B - B =1 for 1 <i<2n,

1 <i<2n, and

we have that x'€P(G), which contradicts the uniqueness of x*.
Therefore C contains no even circuits.

Now suppose that C contains more than one odd circuit,
in particular the two odd circuits

V11€19V9s 8 Vom0 €210V

. wl’fl’WZ’fZ""’w2m+1’f2m+1’w1

where (without loss of generality) vy and w. are joined by the

1

s

path [

V19815Ups8gsc s, 8) 5V,
It should be noted that the subsequent argument does not depend
on the two odd circuits being disjoint. If they are not disjoint,
then of coutse the path joining them has length zero.

We now define x' on E by

(a) xé = xz if e is not an edge of qpe of-the ‘two circuits or

of the path,
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(b) for the remaining edges of G, depending on whether k is

even or odd, we define X' according to the schematic

diagrams:

k even

N
~

Vluﬂ . Wam+

_ The factor % in the definition of B guarantees that x' > 0.
f Since the B's candl at each vertex, we also .have that
: SN e
x' (5 (v ='§_‘*(6(v)) =1 for vev.
Therefore x'€P(G) and x' # x* (since B > 0), which again
3 4"
contradicts Che uniquenesé of x*, so C contains (and hence is)

-

exactly one odd circuit,







