Creator:
Date:
Abstract:
Interest in alternative fuels for power generation is growing, yet these fuels bring new challenges to gas turbine design and operation. Among these challenges are combustor operability issues, highlighted by problems with combustion instabilities. For this thesis, a fundamental study of the effects of fuel composition on combustion dynamics was undertaken. An acoustically forced flat flame burner was constructed, allowing measurement of the flame transfer function (FTF) relating acoustic perturbations to heat release rate fluctuations in the flame. Tests were done using methane, along with simulated syngas and biogas fuel mixtures over a variety of operating conditions. Large variations in methane concentration had a significant impact on the FTF, while variations in the hydrogen to carbon monoxide ratio did not impact the FTF in fuel mixtures of equal parts methane and syngas. The Strouhal number was found to be an important parameter in predicting phase response independent of the fuel type. Flame liftoff distance and fuel composition were the key parameters determining the peak FTF magnitude. A hypothesis on the role of the non-adiabatic nature of the flat flame and thermal-diffusive effects on the trends in peak FTF magnitude is presented and discussed.