Deep Reinforcement Learning for Quantitative Finance: Time Series Forecasting using Proximal Policy Optimization

Public Deposited
Resource Type
Creator
Abstract
  • In this work, the focus is on price prediction and concurrent strategy building. The modelling approach chosen for this is of the deep reinforcement learning type, and actor-critic class. Specifically, in this work the proximal policy optimization (PPO) architecture is employed individually on each stocks market history in order to try and solve the price prediction problem. A custom RL environment was built to run the proposed experimental sequence and to test which parameter values should be used in regards to learning rate, discount factor, feature space, action space, and look-back length. These values were subsequently used for experiments on different datasets, exploring the portability of the model, effect of transfer learning, as well as portability of the parameter configuration. The results show our experimental sequence can be effectively used for the price prediction problem, and in some instances outperform a practical B&H strategy.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2022 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2022

Relations

In Collection:

Items