Regulation of Anti-Apoptotic Pathways in Skeletal Muscle and Liver of an Estivating Species, Xenopus laevis

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Maistrovski, Yulia

Date: 

2013

Abstract: 

This study investigated the anti-apoptotic pathways activated during dehydration and estivation of the African clawed frog, Xenopus laevis. Staying immobile for a significant period of time can cause serious tissue atrophy in non-adapted animals. To preserve skeletal muscle and liver mass, certain metabolic pathways with functions in cell preservation and protection must be activated. This study focused on two families of transcription factors, NF-κB and STAT whose target genes include those with anti-apoptotic functions. The data indicated an upregulation of the NF-ᴋB pathway in liver of dehydrated frogs along with downstream targets Bcl-xL and c-IAP. STAT3 appeared to be active in liver whereas STAT5 was active in skeletal muscle. Relative levels of the NF-κB and STAT downstream target Bcl-2 were elevated in response to dehydration. Analysis of pro- and anti-apoptotic microRNAs indicated that these contribute to post-transcriptional regulation of mRNA transcripts that encode proteins with roles in cell survival.

Subject: 

BIOLOGICAL SCIENCES Biology - Molecular

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Science: 
M.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Biology

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).