Development of an Innovative Hybrid Timber-Steel Moment-Resisting Frame for Seismic-Resistant Heavy Timber Structures

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Gohlich, Ryan Joseph




This study assesses the seismic performance of a new hybrid timber-steel moment-resisting connection for mid-rise heavy timber structures. This system consists predominantly of timber members, but utilizes a steel yielding link at the beam-column joint that improves seismic performance by replacing connection components that are susceptible to brittle failure with ductile steel elements. The steel-to-timber connection was made using self-tapping screws. By localizing all inelastic behaviour to a single ductile component, design with high seismic force reduction factors becomes justifiable. Four connections were tested; a majority of the plastic rotation was localized to the link, high levels of ductility were achieved, and the steel-to-timber connections remained undamaged. A numerical study was performed on a hybrid frame using the proposed connection, and an equivalent steel-only frame. Results showed that drifts and accelerations remained within allowable limits, indicating that well-detailed hybrid connections can result in seismic performance similar to steel-only frames.


Engineering - Civil




Carleton University

Thesis Degree Name: 

Master of Applied Science: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Civil

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).