Development of an Innovative Hybrid Timber-Steel Moment-Resisting Frame for Seismic-Resistant Heavy Timber Structures

Public Deposited
Resource Type
Creator
Abstract
  • This study assesses the seismic performance of a new hybrid timber-steel moment-resisting connection for mid-rise heavy timber structures. This system consists predominantly of timber members, but utilizes a steel yielding link at the beam-column joint that improves seismic performance by replacing connection components that are susceptible to brittle failure with ductile steel elements. The steel-to-timber connection was made using self-tapping screws. By localizing all inelastic behaviour to a single ductile component, design with high seismic force reduction factors becomes justifiable. Four connections were tested; a majority of the plastic rotation was localized to the link, high levels of ductility were achieved, and the steel-to-timber connections remained undamaged. A numerical study was performed on a hybrid frame using the proposed connection, and an equivalent steel-only frame. Results showed that drifts and accelerations remained within allowable limits, indicating that well-detailed hybrid connections can result in seismic performance similar to steel-only frames.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2016 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2016

Relations

In Collection:

Items