On Applications of Topological and Combinatorial Methods to the Theory of Groups

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Santean, Mihail

Date: 

2022

Abstract: 

Graphs are topological objects called 1-dimensional CW complexes, and their fundamental groups are free groups. More generally, any group can be represented by a 2-dimensional CW complex, which is a graph with discs glued along the boundaries of closed paths corresponding to relations in the group. These objects can be studied from the topological viewpoint of covering space theory, introduced by John R. Stallings, which allows us to "visualize" groups and determine their subgroup structure. Alternatively, graphs can be studied from a combinatorial point of view, developed by Ilya Kapovich and Alexei Myasnikov, which provides simple algorithms that answer questions about free groups. We give an exposition of both approaches and demonstrate how they are used to answer questions about subgroups of free groups and free products.

Subject: 

Mathematics

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Science: 
M.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Mathematics

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).