Reproducing Acceleration Power Spectral Density from an Aircraft Fuselage Panel Excited by Turbulent Boundary Layer Using Piezoelectric Actuators

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Sonnenberg, Steven Albert James




Noise and vibration in an aircraft cabin during cruise conditions is predominantly caused by external flow excitations from the turbulent boundary layer. The turbulent boundary layer causes the fuselage panels on the aircraft to vibrate. These vibrations radiate sound energy in the form of noise. This thesis describes a method to analytically optimize aircraft’s cabin panel parameters, to reduce the acceleration power spectral density of the panel caused by the turbulent boundary layer. Additionally, it presents an experimental validation, and modification of two existing analytical models used to calculate acceleration power spectral density for a panel, with three different excitations: an impact hammer force, a turbulent boundary layer, and a piezoelectric patch. Finally, an optimization method has been developed to reproduce the acceleration power spectral density of an aircraft panel by optimally selecting the placement of a given number of piezoelectric actuators, excited with a white noise distribution of frequencies.


Engineering - Aerospace
Physics - Acoustics




Carleton University

Thesis Degree Name: 

Master of Applied Science: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Aerospace

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).