Creator:
Date:
Abstract:
The research presented in this thesis involves implementing a high data rate wireline com- munications system using Discrete Multitone (DMT) transmission. A theoretical analysis of the model of channels typically used for serializer/deserializer SERDES chip to chip com- munication is done, showing the benefits of DMT through improved spectral efficiency, and simplified transceiver design due to the pseudo-narrowband characteristics of DMT. Sim- ulations results demonstrate this benefit by being able to achieve higher data rates than conventionally used non-return-to-zero (NRZ) and pulse-amplitude modulation (PAM) typ- ically used, even with typical channel correction circuitry such as continuous-time linear equalizers (CTLE) and decision-feedback equalizers (DFE). Furthermore, a combined bit- loading/power allocation and transmit side equalization algorithm is presented that can improve the data rate of the system and decrease its error rate. Measurement results are demonstrated using a digital-analog-converter (DAC) and analog-digital converter (ADC) test bed using realistic conditions for chip-to-chip communication with a data rate over 250 GB/s with sufficient overhead for forward-error-correction (FEC) coding needed to reduce the bit-error rate (BER).