Regulation of skeletal Muscle Glycolysis During Dehydration in the Aestivating African Clawed Frog, Xenopus Laevis

Public Deposited
Resource Type
Creator
Abstract
  • Seasonally arid conditions trigger African clawed frogs (Xenopus laevis) to enter aestivation. This process includes whole body dehydration that at high levels can create hypoxic conditions due to impaired blood circulation and increase the need for glycolytic energy production. This thesis examines hexokinase (HK) and lactate dehydrogenase (LDH) purified from skeletal muscle of control versus dehydrated (~30% body water lost) frogs. Studies analyzed substrate affinities, urea effects, thermal stability and protein posttranslational modifications (PTM) to understand how enzyme properties are modified under dehydration stress. Muscle HK and LDH showed regulation by reversible protein phosphorylation and nitrosylation. These PTM’s correlated with reduced affinities for glucose by HK and lactate by LDH, overall lower Vmax for LDH in both directions, and altered thermal stabilities. The two enzymes responded to the same PTMs, which suggests that coordinated controls over these first and last enzymes of anaerobic glycolysis contribute to dehydration responsive pathway regulation.

Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2014 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2014

Relations

In Collection:

Items