Regulation of skeletal Muscle Glycolysis During Dehydration in the Aestivating African Clawed Frog, Xenopus Laevis

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Childers, Christie




Seasonally arid conditions trigger African clawed frogs (Xenopus laevis) to enter aestivation. This process includes whole body dehydration that at high levels can create hypoxic conditions due to impaired blood circulation and increase the need for glycolytic energy production. This thesis examines hexokinase (HK) and lactate dehydrogenase (LDH) purified from skeletal muscle of control versus dehydrated (~30% body water lost) frogs. Studies analyzed substrate affinities, urea effects, thermal stability and protein posttranslational modifications (PTM) to understand how enzyme properties are
modified under dehydration stress. Muscle HK and LDH showed regulation by reversible protein phosphorylation and nitrosylation. These PTM’s correlated with reduced affinities for glucose by HK and lactate by LDH, overall lower Vmax for LDH in both directions, and altered thermal stabilities. The two enzymes responded to the same PTMs, which suggests that coordinated controls over these first and last enzymes of anaerobic glycolysis contribute to dehydration responsive pathway regulation.




Carleton University

Thesis Degree Name: 

Master of Science: 

Thesis Degree Level: 


Thesis Degree Discipline: 


Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).