High Fidelity and Efficient Computations of Dynamic Loads for Multidisciplinary Design Optimization of Flexible Transport Aircraft

Public Deposited
Resource Type
Creator
Abstract
  • The current state-of-the-art design optimization of airframes is tightly wounded to its loads analyses as the process is usually conducted employing a deterministic set of critical load cases. The sheer number of scenarios required to estimate the critical loading conditions prevent these two processes from integrating. In this thesis, we address the problem of an efficient estimation of critical dynamic aeroelastic loads. The method is based on the Kriging metamodeling technique and the Expected Improvement Function, known formally as the Efficient Global Optimization (EGO) algorithm. Furthermore, different inexpensive metrics, based on the concept of Modal Contribution Factors, are investigated as indicators to determine if a substantial change in the loads has occurred during the design optimization, triggering the re-exploration of the design space. A case study is presented to evaluate the performance of the proposed methodology, where a reduction of 84 percent in the total time of execution was achieved.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2018 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2018

Relations

In Collection:

Items