An Intelligent PHM System for Bearing Fault Phase Diagnosis and Multi-Phase RUL Prediction using Oil Debris Monitors

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Raj, Lourd Arun




Several experimental studies have found that rolling element bearing's service life can be typically divided into three phases: normal operation, gradual degradation, and accelerated degradation. Although extensive studies have been carried out on bearing life prediction, most studies focus only on life prediction in the accelerated degradation phase. Although Oil Debris Monitors (ODMs) have excellent potential in bearing condition monitoring, only a handful of studies explore its potential for Remaining Useful Life (RUL) prediction. Therefore, in this thesis, an intelligent bearing health management system is presented that primarily uses the information from the ODMs. The system contains two major modules namely, fault phase diagnosis and RUL prediction. The data-driven diagnosis module uses multi-sensor data along with three novel degradation indicators based on wear debris characteristic information. The RUL prediction module is a model-based tool where a novel physics-based multi-phase degradation model is utilized in a novel enhanced adaptive Particle Filter.


Artificial Intelligence
Applied Mechanics
Engineering - Mechanical




Carleton University

Thesis Degree Name: 

Master of Applied Science: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Aerospace

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).