Thermal Environment for Polar Communications and Weather System in the Telesat-Tundra Orbit

Public Deposited
Resource Type
Creator
Abstract
  • The proposed Telesat-PCW will use a unique orbit, based on the Tundra orbit to provide continuous meteorological and communications coverage to the Arctic region. The Telesat Tundra Orbit (TTO) was selected as it can meet the mission requirements using systems designed for Geostationary Orbits (GEO), a mature and robust field. However, the unique combination of communications and meteorological payloads, coupled with a previously unused orbit, presents an unexamined thermal design scenario. Using an existing geostationary satellite design for PCW would significantly reduce costs. This thesis describes the spacecraft thermal environment of the TTO, compares it to the thermal environment of the geostationary orbit, and numerically analyzes the suitability of a typical geostationary satellite thermal design system for PCW by using a Thermal Mathematical Model (TMM). The analysis shows that a thermal control system for a typical GEO communications satellite can sufficiently regulate PCW spacecraft temperatures in the TTO.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2014 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2014

Relations

In Collection:

Items