Performance Enhancement of High Order LDPC Coded Modulation Systems with Application in Mobile Backhaul Networks

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Neshaastegaran, Peyman




Wireless backhaul communication systems play a crucial role in the infrastructure of current cellular networks. In light of the expensive costs of fiber deployment, the importance of these links is anticipated to continue over the next few decades. Point-to-point microwave radio links (PtPMRLs) are the backbone of every wireless backhaul system. To achieve higher spectral efficiencies, the PtPMRL are designed based on the concurrent exploitation of high-order modulations and powerful forward error correcting codes. An example of such design paradigm is the high-order low-density-parity-check coded modulation systems (LDPC-CMSs). In this thesis two key challenges in the high-order LDPC-CMSs are overcome. In our first contribution, we consider the problem of oscillator phase hit (PH) in microwave backhaul communication links. PH results in a temporary link loss in the communication system and bears an expensive cost on the operators. In this work, we propose a two-stage solution to mitigate PH. In the first stage, we use Neyman-Pearson binary hypothesis testing to develop a low cost PH detection algorithm. In this test, a likelihood ratio test is designed and the optimal detection threshold is analytically calculated. The proposed PH detection scheme entails small real-time computations while using the existing pilot symbols in the system; thus, no extra pilot overhead is required. In the second stage, we use maximum likelihood estimation to develop a PH correction scheme. In particular, we formulate the joint estimation of phase noise (PN) and PH as a maximum likelihood estimation problem. Solving this problem results in the estimation of PN with the location and magnitude of PH. By applying the proposed correction scheme, the number of affected symbols by PH is significantly reduced. In particular, the number of remaining erroneous symbols due to PH (if any) is within the error correction capability of modern LDPC codes used in the PtPMRL. Numerical results verify the effectiveness of the proposed scheme in detecting and correcting PH. In our second contribution,...


Engineering - Electronics and Electrical




Carleton University

Thesis Degree Name: 

Doctor of Philosophy: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Electrical and Computer

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).