Experimental and Modeling Studies of Thermal Barrier Coating Failure Under Isothermal Oxidation and Solid Particle Erosion

Public Deposited
Resource Type
Creator
Abstract
  • The hot section components of aerospace gas turbines are facing a material problem with continuously increasing the working temperature (up to 1700°C) of the turbine engines in order to achieve improved efficiency. Commonly used nickel-based superalloys for these components exhibit deficiency in such a high temperature condition, therefore thermal barrier coatings (TBCs) have been developed, which can be applied on the nickel-based superalloy substrate via various deposition techniques, to reduce the temperature exerted on the substrate material. In this research, the failure behavior of a TBC system that consists of an 8 wt% yttria partially stabilized zirconia (YSZ) top coat and CoNiCrAlY (Praxair CO 211) bond coat, deposited on nickel based superalloy Inconel 718 substrate via atmospheric plasma spraying (APS) process, has been studied experimentally under isothermal oxidation loading and solid particulate erosion to have a better understanding of the failure mechanisms of the TBC system.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2020 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2020

Relations

In Collection:

Items