Prediction of heat transfer coefficient around transpiration cooled cylinders in crossflow


Garg, Paras Kumar




A numerical method of calculating the heat transfer coefficient in the laminar boundary layer region of a transpiration cooled cylinder in crossflow is presented. The method is applicable to two-dimensional boundary layers, laminar as well as turbulent, with arbitrary distribution of wall temperature and surface blowing rate. Starting profiles of temperature and velocity, which can be obtained either from experimental results or engineering judgement are required. Profiles at successive downstream positions are calculated using a marching integration procedure. Boundary layer parameters such as heat transfer coefficient, wall shear stress, momentum thickness and shape factor are calculated from these profiles.

The method is tested against the well known exact solutions for laminar boundary layers and against turbulent boundary layer data. Thus proven, it is used to study the effect of surface blowing on heat transfer and other boundary layer parameters in the laminar boundary layer region of a cylinder in crossflow.

The method is also used for calculating the heat transfer on an aerofoil section and can be applied to other two-dimensional boundary layer problems.


Heat -- Transmission
Boundary Layer
Laminar Flow




Carleton University

Thesis Degree Name: 

Master of Engineering: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Mechanical

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).