Design of an Optical Fiber-Coupled Sensor for Ambient Methane Measurement

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Schoonbaert, Stephen




A tunable diode laser system was developed for remote monitoring of ambient methane using fiber optically connected all-optical sensor heads. Experiments were performed to quantitatively evaluate the influence of selected system hardware and software configurations, with the further goal of enabling measurements of ambient methane concentrations over an intrinsically-safe fiber optic network at sufficient precision and sensitivity to detect unknown fugitive emission sources. The designed system could switch between the sweep integration (SI) and wavelength modulation spectroscopy (WMS) detection methods, which inferred the methane volume mixing ratio from an absorption or second-harmonic (2f) feature respectively. Signals controlling the laser injection current were optimized to balance trade-offs between measurement precision and system sensitivity, and fiber optic components were thermally stabilized to reduce system drift. Starting from this base system, experiments were performed to evaluate the effectiveness of theory-based and experimental calibration methods, software and dual laser approaches to estimating the absorption-free intensity, different signal processing approaches to suppress effects of residual amplitude modulation (RAM) of the laser output intensity, and methods to reduce system drift. Tests also considered effects of varying fiber lengths between the central laser control hardware and the remotely located optical sensor heads. Finally, long-term stability was evaluated by quantifying bias (drift) and precision uncertainty in tests up to 16 months after initial calibration. The best measurement performance was achieved using the WMS method with thermally stabilized optical components within the central control hardware combined with a theory-based calibration, automated daily calibration supported by concurrent software-based estimation of the absorption-free intensity, and pair-wise averaging of the 2f feature maxima in each sweep period to suppress effects of RAM. At an averaging time of 1 s and methane concentrations between 1.0 and 50 ppmv, the system implementing the 2f-WMS method surpassed the methane volume mixing ratio measurement targets with a precision of 1.6 ppmv (absorbance of 6.57×10–7 cm–1) and lower detection limit (LDL) of 1.5 ppmv (6.13×10–7 cm–1).


Engineering - Mechanical
Remote Sensing




Carleton University

Thesis Degree Name: 

Doctor of Philosophy: 

Thesis Degree Level: 


Thesis Degree Discipline: 

Engineering, Mechanical

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).