Instrumentation and application of unmanned ground vehicles for magnetic surveying

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Hay, Andrew William

Date: 

2017

Abstract: 

With the recent proliferation of unmanned aerial vehicles (UAV) for geophysical surveying a novel opportunity exists to develop unmanned ground vehicles (UGV) in parallel. This research presents a pilot study to integrate two UGVs, the Kapvik planetary micro-rover and a Husky A200 robotic development platform, with a GSMP 35U magnetometer that has recently been developed for the UAV market. Magnetic noise levels generated by the UGVs in laboratory and field conditions are estimated using the fourth difference method and, at a magnetometer-UGV separation distance of 121 cm, the Kapvik micro-rover was found to generate a noise envelope ± 0.04 nT whereas the noisier Husky UGV generated an envelope of ± 3.94 nT. The UGVs were assessed over a series of successful robotic mapping missions which demonstrated their capability for magnetic mapping, and their productivity and versatility in field conditions.

Subject: 

Surveying.
Remote Sensing.

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Science: 
M.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Earth Sciences

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).