Position Estimation of Mobile Robots Using Omni-Directional Cameras

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Fouad, Omar Mohamed Mostafa Kamal

Date: 

2015

Abstract: 

In this work, a design of a perception approach for indoor service mobile robots is considered. Unlike outdoor environments, in which Global Positioning System (GPS) can be utilized, indoor environments usually include small workspaces with complex details. Thus, a significantly higher localization precision is required. Readily available sensing techniques that meet those requirements utilize sensors such as transceivers and vision systems. These perception approaches depend on the workspace type. In the proposed approach, a stereo vision system has been used. Such an approach captures the
environment features to produce a 2D/3D map. However, due to the mobility of indoor robots, the problem of losing environment features arises, e.g., they might encounter scenes with non-detectable features. In order to solve the difficulty of obtaining a highly precise map in a highly compact environment, a stereo panoramic vision perception model was developed to integrate the data from two omni-directional vision sensors.

Subject: 

Engineering - Mechanical
Applied Mechanics

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Applied Science: 
M.App.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Engineering, Mechanical

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).