A CNN Based Method for Brain Tumor Detection

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Wang, Heng

Date: 

2018

Abstract: 

The thesis presents a new method of brain tumor detection and localization by using image segmentation and convolution neural network. In order to ensure the quality of the medical images, there are several image preprocessing techniques applied, which include the procedure of removing the noise and non-brain tissue and enhancing the contrast. By using active contour for segmentation, the tumor area is separated from the image as its energy appears different in pixels and the feature extraction reveals the mathematical properties of the tumor.After the tumor localization, the target regions are imported into to the CNN and CNN classifies them into categories based on the training results from the learning procedure. This thesis uses the 4-fold cross validation for result testing. With over 80% accuracy, the CNN shows great potential in tumor detection. In addition, this thesis covers the section of how parameter settings influencing the CNN performance.

Subject: 

System Science

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Applied Science: 
M.App.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Engineering, Electrical and Computer

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).