Electrophysiological Profile of Differentiating Human Central Canal Ependymal Stem-Progenitor Cells

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.


Malone, Kyle




Stem cell transplant and niche manipulation therapies are a promising tool for repairing damage from SCI and other neurodegenerative conditions. Since immunocytochemistry alone cannot adequately determine whether stem cells have differentiated into mature neurons, we used patch-clamp electrophysiology to assess passive and active electrical properties of spinal cord central canal stem cells. Human epSPCs differentiate towards a majority neuronal fate, with no action potential firing from two to ten weeks in vitro regardless of differentiation media. Passive membrane properties failed to reach typical mature neuron levels. The majority of cells showed voltage-dependent spontaneous synaptic currents with reversal near 0 mV, outward rectification, and decay kinetics consistent with excitatory glutamatergic responses. In future, research will examine the required timeline and most effective differentiation media for development of active membrane properties. Identification of receptor subtypes responsible for observed synaptic currents is required. This will inform future stem cell-based treatments of neurological disorders.


Human Development
Biology - Molecular




Carleton University

Thesis Degree Name: 

Master of Science: 

Thesis Degree Level: 


Thesis Degree Discipline: 


Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).