Evaluation of the Convolution Sums

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

Click here to download the PDF file.

Creator: 

Ntienjem, Ebenezer

Date: 

2015

Abstract: 

For all positive integers $n$ we evaluate the convolution sums $\displaystyle\overset{}{\underset{ \begin{array}{c} {(l,m) \in \mathbb{N}^2} \\ {\alpha l+\beta m=n} \end{array} } {\sum}}\sigma(l)\sigma(m)$, where $(\alpha,\beta) = (1,14), (2,7), (1,26), (2,13), (1,28)$, $(4,7), (1,30), (2,15), (3,10), (5,6)$. Using some of the evaluations of these convolution sums we determine formulae for the number of representations of $n$ by the octonary quadratic forms \begin{equation*} x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}+ 7 (x_{5}^{2} + x_{6}^{2} + x_{7}^{2} + x_{8}^{2}) \end{equation*} and \begin{equation*} a(\,x_{1}^{2} + x_{2}^{2} + x_{1}x_{2} + x_{3}^{2} + x_{3}x_{4} + x_{4}^{2}\,) + b (\,x_{5}^{2} + x_{5}x_{6} + x_{6}^{2} + x_{7}^{2} + x_{7}x_{8} + x_{8}^{2}\,), \end{equation*} where $(a,b)$ stands for $(1, 10)$ or $(2,5)$.

Subject: 

Mathematics

Language: 

English

Publisher: 

Carleton University

Thesis Degree Name: 

Master of Science: 
M.Sc.

Thesis Degree Level: 

Master's

Thesis Degree Discipline: 

Pure Mathematics

Parent Collection: 

Theses and Dissertations

Items in CURVE are protected by copyright, with all rights reserved, unless otherwise indicated. They are made available with permission from the author(s).