Development of Kinematic and Dynamic Models for the Argo J5 Rover

Public Deposited
Resource Type
Creator
Abstract
  • This thesis presents the development of three-dimensional kinematic and dynamic models, using MATLAB and SimMechanics, describing the Argo J5 four-wheel rover, in response to terrain elevation inputs and slip. The kinematic models describe the pose and velocity of the rover using the Denavit-Hartenberg convention, while the SimMechanics dynamic model is combined with a terramechanics model to develop accelerations and obtain the forces and torques, based on terrain properties. The kinematic analyses were performed for simulated traverses including cases of flat, inclined, side slope, and sinusoidal terrain, with varying amounts of slip in the velocity analysis. The results showed good agreement with expected trends and values for the joint displacements and rates, with the largest percent deviation for the distance traveled being approximately 0.4 %. The combined dynamic and terramechanic model, is limited to the conceptual development of the model due to time constraints, and results are inconclusive at this time.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2019 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2019

Relations

In Collection:

Items