Deposition Modelling of High Density Tailings Using Smoothed Particle Hydrodynamics

Public Deposited
Resource Type
Creator
Abstract
  • High density (HD) tailings are tailings that have been sufficiently dewatered, where they exhibit a yield stress upon deposition, and therefore naturally form gently sloped deposits that do not requires dams for containment. It is essential to comprehend and model the flow behaviour during deposition to predict the final geometry of the stack and control storage capacity; which are important design elements to HD tailings technology. As HD tailings exhibit a yield stress, modelling stack geometry constitutes, in part, a problem of non-Newtonian flow with a free surface. This research investigated modelling the flow behaviour of HD tailings, using an open-source Smoothed Particle Hydrodynamics (SPH) code. The results indicated that two-dimensional simulations using SPH agreed well with experimental data for single and multi-layer flume tests. SPH has the advantage over simpler methods, such as Lubrication Theory, as SPH better predicts the geometry when inertia influences the flow of tailings.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2014 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2014

Relations

In Collection:

Items