Experimental Characterization of Turbulent Motions Using Wall-Pressure Measurements in Low Reynolds Number Turbulent Boundary Layers

Public Deposited
Resource Type
Creator
Abstract
  • The wall-pressure fluctuations induced by low Reynolds number turbulent boundary layers are experimentally studied using flush-mounted microphones. The spatial coherence of the energy is characterized using traditional time-averaged statistical descriptors. A novel analysis is developed, based on the wavelet transform, to study the organization of coherent turbulent events, and their corresponding wall-pressure signatures. This analysis identified that induced irrotational motions/entrained fluid, between neighbouring packets, have wall-pressure signatures below 100 Hz, and packets of hairpin vortices contribute to the wall-pressure energy between 100 Hz and 250 Hz. The packets contain a hierarchy of organized, well-defined events, which contribute to the wall-pressure fluctuations at frequencies above 250 Hz. It is estimated that wall-pressure signatures from packets can be retained for up to seven boundary layer thicknesses in the streamwise direction. The composition of events within hairpin packets depends on Reynolds number, showing a shift towards higher-frequency events, with increasing Reynolds number.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2016 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2016

Relations

In Collection:

Items