Interpolatory Nonlinear Model Order Reduction and its Application in Circuit Simulation

Public Deposited
Resource Type
Creator
Abstract
  • This thesis presents a new approach to construct parametrized reduced-order models for nonlinear circuits. The reduced model is obtained such that it matches the variations in the DC operating point of the original full circuit in response to variations in several of its key design parameters. The new approach leverages the discrete empirical interpolation approach developed for model reduction in other domains and enables its efficient application to the problem of DC operating point in nonlinear circuits. Utilizing the idea of rooted trees, the proposed approach constructs orthogonal bases that are used in projecting the full equations of the large original nonlinear circuit onto a reduced system of nonlinear equations in a space with a much smaller dimension. The variations in the DC operating point of the full circuit are then obtained by solving the reduced system of equations, yielding significant computational savings.

Subject
Language
Publisher
Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Identifier
Rights Notes
  • Copyright © 2021 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.

Date Created
  • 2021

Relations

In Collection:

Items