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Abstract

The existence of a very low complexity soft-in / soft-out decoder for simple parity equations
makes code structures composed of such equations attractive because they can be efficiently
decoded using an iterative approach. A basic way of creating code structures from simple
parity equations is to arrange the equations in N-dimensional ~box™ configurations. Codes
created in this manner offer good. but not exceptional, error-rate performance, for a given
block size and code rate. This thesis presents methods of augmenting such basic structures
to produce codes with significantly enhanced distance properties. Also. novel enhance-
ments to the decoding process have been developed that both improve performance and
reduce implementation complexity. This new family of coding schemes has been given the
name “hyper-codes”. These codes can provide very good error-correcting performance for
a wide range of communications applications, and are especially attractive for applications

requiring short block lengths or high code rates.
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Chapter 1

Introduction

This document describes what have been termed “hyper-codes”. These are block error-
correcting codes composed of simple codes arranged in a “multi-dimensional” aggregate
structure, which are decoded from soft channel samples using an iterative approach based
on MAP (maximum e posteriori) principles. These codes can provide very good error-
correcting performance for a wide range of communications applications. but are especially
attractive for applications requiring a channel utilization level higher than 1 information bit
per symbol or channel use. For example. using QPSK modulation over an AWGN channel,
a hyper-code of block size 4096 information bits and of rate=0.79 achieves a BER of 10~3 at
an E,/Ng of 3 dB. This is only 2 dB from the Shannon capacity limit. and only 1 dB from
the capacity limit for QPSK modulation. Further. the processing and memory requirements
associated with decoding these codes are very reasonable.

Readers familiar with MAP decoding and not wishing to read this entire document are

referred to sections 3.6 and 6.

1.1 Background

The ~hyper-code” FEC coding approach that has been developed builds on previous work

by other researchers. The following list outlines some prominent related work.

e [terative probabilistic decoding of codes comprised of simple parity equations, us-
ing log-likelihood ratios (LLRs): Gallager [2]; however, there was no subtraction of

“extrinsic” information, nor was the “max” approximation used.

e Max-log-MAP approach as applied to simple parity equations: Battail [3].



o [terative decoding of multi-dimensional parity structures, using the max-log-MAP
approximation as applied to simple parity equations, and including a method of sub-

tracting off the extrinsic information: Lodge (3, 4].

e “Turbo codes™. which use parallel, recursive. systematic convolutional encoders. and
are decoded using iterative MAP techniques: Berrou et al [6]: of particular interest
is that these researchers also adjust the extrinsic information in order to improve the

BER performance.

e [terative log-MAP decoding of multi-dimensional parity structures. with subtraction
of extrinsic information: Hagenauer [1]; however, there was no parity-on-parity. and
though the “max™ approximation was discussed, the complexity reduction afforded
by using this approximation in conjunction with simple parity equations was not
exploited. Also, no scaling or other adjustment of the extrinsic information was per-

formed.

1.2 Capacity theory

Shannon’s capacity theorem states that. for an AWGN channel. the maximum reliable (i.e.

error-free) transmission rate is given by (from[11]):

P
< _— .
Ry < Blog, (1+.V08>bps (1.1)

where B represents the channel bandwidth. Ng/2 the (two-sided) noise power spectral
density, P the transmitted power. and R, the communication bit rate in bits-per-second
(bps). This expression can be re-arranged to give the minimum E}/.Vy required for reliable

communication as a function of R;/B:

Ey 2F -1
_> — (1.2)
= R
Yo B
The minimum value for E}/Ng is obtained when R,/ B (the so-called “bandwidth efficiency™)
approaches zero. This provides a lower bound for E;/Ng below which “reliable” communi-

cation is not possible. This is the Shannon limit (again, from [11]):

E

> 10log,q (log.2) dB
.’VO

= -1.6dB (1.3)



If bandwidth efficiency is of concern. this limit rises. For a bandwidth efficiency of R;/B =
1 bps/Hz, the limit for reliable communication is 0 dB. A bandwidth efficiency of 1 bps/Hz
is a relevant figure. because of the prevalence of antipodal signaling and rate=1/2 coding!.
Note. however. that the 0 dB theoretical limit does not include the antipodal signaling
restriction. If this is taken into account. the E,/Ng required for reliable communication
increases to about 0.18 dB.

[t is imperative to realize that all of these channel capacity results assume arbitrarily
long block lengths. For finite-length blocks. it is impossible to guarantee error-free com-
munication. (The channel is assumed to be AWGN, with non-zero .Vy/2, throughout this
discussion.) However, for a particular block length and transmitted E,/.Vo (and bandwidth
efficiency and type of signaling). there must exist a minimum probability of block error
that no coding scheme can do better than. It is interesting to note. however. that such
theoretical results do not seem to be readily available in the coding literature. though some
discussion of block error rate for finite-length blocks is given in [12]. Such results would be
very useful when evaluating new coding schemes.

Further, it is theoretically possible to devise a finite-length block coding scheme that
would provide acceptable performance even below the Shannon limit. The key word here is
~acceptable”., which does not imply error-free. That is. the Shannon limit (and the other
limits given earlier) are boundaries that apply to infinite-length blocks. and for finite-length
blocks these limits do not exist. Instead. the minimum achievable block error rate simply
continues to decrease with increasing E}/.Vg.

Finally, it is important to point out that as the block size increases. it becomes “easier”
to develop codes that achieve a certain BER performance at a given E;/Ng. Thus, when
comparing the performance of FEC schemes. it is only valid to compare approaches with
similar block lengths (and code rates). In continuous coding schemes (e.g. convolutional

codes) the history depth can be used to determine an “effective™ block length.

!For a channel having a bandwidth of B Hz, the maximum signaling rate is 2B. This is a direct consequence
of the Nyquist sampling theorem. With antipodal signaling, each symbol is only one bit. Thus, the maximum
channel bit rate is 2B bps. If rate=1/2 coding is used, the information bit rate is exactly half of the channel
bit rate. This gives an information bit rate of B bits per second over a bandwidth of B Hz, and hence a
bandwidth efficiency of one.



Chapter 2

Fundamental concepts

There are several concepts that form the foundation on which hyper-codes are built. These
concepts are introduced in this chapter. Only a brief discussion of each concept will be

presented at this point: more detailed descriptions will be provided later.

2.1 Parity equations

The term parity equation refers to a set of bits to which a single parity bit has been
added. the parity bit being chosen so as to make the overall parity even. Even parity means

an even number of =17 bits.

2.2 Basic codes constructed from parity equations

The minimum distance (d;») of a code is the fewest number of bits that can be flipped to
convert one codeword into another codeword. The minimum distance of a parity equation.
in isolation. is 2. This is a small minimum distance. Parity equations can be combined,
however, to produce composite structures with much higher minimum distances. A straight-
forward way of achieving this is to arrange a collection of parity equations into an N-
dimensional hyper-cube structure. A basic example of a hyper-cube is a two-dimensional
parity square. Consider the following codeword. consisting of 9 information bits and 7
parity bits (the parity bits are italicized):

1001

1010

1100

1111



The nine information bits have been arranged into a 3x3 square. A parity bit has been
added to each of the 3 rows, making every row have even parity. Subsequently, a parity
bit has been added to each column. making each column have even parity. The minimum
distance of the resulting structure is four. [t is important to observe that a parity bit has
been added for the column of row-parity bits. This ~parity-on-parity” bit could have been
omitted. but then the minimum distance of the code would only be three. Note that the
final row also forms a valid parity equation. The final row of bits is the (modulo-2) sum of
all of the other rows, and each of the other rows has an even number of ones. and therefore
the final row must have an even number of ones. making it a valid parity equation.

The example given was for a two-dimensional code. It should be fairly clear. however,
to see that this approach of combining parity equations can be generalized to N dimensions.
For example. one could take three parity squares like the ones described above, arrange
them one behind another, and apply parity across the three planes to produce a fourth
plane consisting of 16 more parity bits, the final result being a structure having a minimum
distance of 8. The new parity plane is also a valid 2-D codeword. meaning that each of
its rows has an even number of ones. and each of its columns has an even number of ones.
Every time a new dimension is added. the minimum distance doubles. so that a parity
hyper-cube with N dimensions has a minimum distance of 2.

[t is important to mention that though the term “hyper-cube” has been used throughout
this discussion. a more accurate term would perhaps be “hyper-box™. since the sides of the
structure need not be of equal length. This more rigorous terminology is somewhat awkward.
however, and so the term “hyper-cube” is used instead. with it understood that the sides
of the structure need not be of equal length. unless explicitly stated.

[n subsequent discussions reference will frequently be made to the idea of a set of parity
equations. for a two-dimensional parity rectangle, there are two sets of parity equations:
the set of row parity equations and the set of column parity equations. Similarly, for a
three-dimensional parity box, there are three sets of parity equations. In general, for an N-
dimensional hyper-cube, there are N sets of parity equations. one set associated with each
dimension of the hyper-cube. That is, for a hyper-cube parity structure, a set of parity
equations is analagous to a dimension of parity equations. This equivalency no longer

holds, however, with more complex parity structures, such as many hyper-codes. For this



reason, the term “set of parity equations” is preferred over referring to dimensions.

2.3 Soft-in / soft-out decoder for parity equations

Consider transmitting a set of bits corresponding to a parity equation across a communi-
cations channel. Further. consider a receiver that does not output ones and zeros (hard
decisions). but rather generates a real value for each channel bit (soft decisions). the
value being a measure of confidence in the bit. with large positive numbers indicating a
high degree of confidence that the corresponding bit is a zero. and large negative numbers
indicating a high degree of confidence that the bit is a one. (To be precise. the numbers
should be log-likelihood ratios. or LLRs for short. These quantities will be described
later in this document.) Given these soft samples from the receiver. it is desired to “im-
prove” these confidence estimates. using the additional information that the bits form a
valid parity equation. Of course. such an “improvement” in the estimates would be of little
utility if only a single parity equation was transmitted. When parity equations are part of a
larger code structure, however. a means of improving the bit estimates becomes very useful
since this provides a way to decode the code in an iterative manner.

The question. therefore. is how can the LLRs output by the receiver be improved (i.e.
be made more reliable). using the information that the set of bits was transmitted with even
parity. A simple yet effective way of achieving this is the following. First. the parity of the
set of soft samples is established. based on how many of the LLRs are negative. This result
determines whether the estimates will be strengthened or weakened. If there are an odd
number of negative samples. then all of the estimates will be reduced in magnitude. and
if there is an even number of negative samples, then all of the estimates will be increased
in magnitude. The magnitude of the adjustment for a particular bit is determined by the
LLR with the smallest magnitude, not including the bit in consideration.

The following example shows the soft-in. soft-out decoding of a 3-bit parity equation.

Note that it does not matter which bit is the parity bit.

0.123 1.295 -0.528 -0.789 -3.475 Input LLRs

“““““““““““ Number of negative samples = 3
-0.528 -0.123 0.123 0.123 0.123 Values that are added (extrinsic information)
-0.405 1.172 -0.405 -0.666 -3.352 Qutput LLRs



Note that this decoding operation has flipped the bit that was most likely in error (the
bit with the weakest LLR). The term extrinsic information is used to describe the values
that are added to the input LLRs to produce the (hopefully) improved output LLRs.

The method described above is derived from calculating the a posterior: probability
(APP) for each bit, expressing the calculations in terms of LLR quantities. and then
approximating the operation of taking the sum of two exponentials by simply taking the
maximum of the two exponents. This simple method for decoding parity equations is called
the max-log-APP method and will be described in more detail later. I[n the literature
this method is commonly referred to as the maximum a posteriori (MAP) method.
This terminology is perhaps somewhat erroneous but because of its widespread usage in
the related literature this document will often use the term MAP where APP may in fact
be the more precise term. The simplicity of the max-log-APP method for soft-in / soft-
out decoding of simple parity equations is one of the primary reasons why building code

structures out of simple parity equations is so attractive.

2.4 Iterative decoding example

With a simple soft-in / soft-out decoder for parity equations. codes constructed out of parity
equations can be efficiently decoded in an iterative manner. The following example illus-
trates how the iterative decoding process works. The sample code consists of 20 information
bits and 10 parity bits. making it an (n.k)=(30.20) code. The information bits are encoded
into a parity rectangle (i.e. a 2-D parity hyper-box), producing a code with 2 minimum
distance dn;, = 4. Note that the iterative decoding process illustrated here is by no means
a maximum-likelihood sequence estimator (MLSE) decoder. Iterative decoded works well,
however. and makes it possible to decode code structures for which MLSE decoding would
be computationally intractable. The term iteration refers to one decoding pass through
all of the parity equations making up a code structure: the term cycle is also sometimes

used in the literature to refer to the same idea.
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ENCODING

Info bits 0 0 0 0 0 The information bits
1 0 0 0 1 are arranged into a
0 0 1 1 1 4x5 rectangle.
1 1 1 1 0
Add row parity 0 0 0 0 0 0 A parity bit is added
1 0 0 0 1 0 to each row so that
0 0 1 1 1 1 every row has even
1 1 1 1 0 0 parity.
Add col parity 0 0 0 0 0 0 A parity bit is added
1 0 0 0 1 0 to each column,
0 0 1 1 1 1 including the column
1 1 1 1 0 0 of row-parity bits.
0 1 0 0 0 1
TRANSMISSION
Symbol mapping 1.00 1.00 1.00 1.00 1.00 1.00 0 bits are mapped
-1.00 1.00 1.00 1.00 -1.00 1.00 to +1.0
1.00 1.00 -1.00 -1.00 -1.00 -1.00 1 bits are mapped
-1.00 -1.00 -1.00 -1.00 1.00 1.00 to -1.0
1.00 -1.00 1.00 1.00 1.00 -1.00
With noise 0.57 0.61 0.26 2.49 1.43 2.65 The noise on the
-0.74 1.86 <-0.03> 1.97 =-2.25 1.26 channel has caused 3
<-0.01> 1.82 -1.76 =-2.77 -0.91 < 0.71> bit errors: 2 info-bit
-2.36 -0.35 -2.04 -1.76 3.77 0.44 errors and 1 parity-
2.84 -1.42 2.10 1.42 3.02 -1.11 bit error.
DECODING
Iter. 1, rows 0.83 0.87 0.83 2.75 1.69 2.91 Performing soft-in
-0.71 1.83 0.71 1.94 -2.22 1.23 soft-out decoding on
<-0.72> 1.83 -1.77 -2.78 -0.92 < 0.72> the row parity eqn’s
-2.71 -0.79 -2.39 -2.11 4.12 0.79 has corrected one of
3.95 -2.53 3.21 2.53 4.13 -2.83 the bit errors.

Iter. 1, cols 0.12 1.66 1.54 4.69 2.61 2.19 Observe that one error
< 0.01> 2.62 1.54 4.05 -3.14 0.51 has been corrected,
<-0.01> 2.62 -2.48 -4.72 -2.61 -0.07 but a new one has been

-2.00 -1.66 -3.10 -4.05 5.04 0.07 introduced.
3.24 -3.32 3.92 4.47 5.06 -1.81
Iter. 2, rowus 0.83 1.26 0.83 4.29 2.21 1.79 The block is now
-0.56 2.67 0.82 4.10 -3.19 0.56 correct, including the
0.78 2.69 -2.55 -4.79 -2.68 =-0.78 parity bits. Decoding
-1.37 -0.94 -2.47 -3.42 4.41 0.94 can stop because all
2.52 -2.60 3.20 3.75 4.33 -2.52 eqn’s are satisfied.

Whenever a set of parity equations is returned to, it is important that the associated
extrinsic information added in the previous iteration is subtracted off before new extrinsic

information is calculated and added in. For instance, in the above example, before new



extrinsic information can be calculated for the row parity equations in the second iteration,
the extrinsic information for the row equations from the first iteration must be subtracted
off. The intermediate steps involved in processing the row parity equations for the second

time are shown below.

Iter. 1, cols 0.12 1.66 1.54 4.69 2.61 2.19 These are the LLR’s
< 0.01> 2.62 1.54 4.05 -3.14 0.51 after the first
<-0.01> 2.62 -2.48 -4.72 -2.61 -0.07 decoding iteration.

-2.00 -1.66 -3.10 -4.05 5.04 0.07

3.2¢ -3.32 3.92 4.47 5.06 -1.81

0l1d extrinsic 0.26 0.26 0.57 0.26 0.26 0.26 This is the extrimsic
0.03 -0.03 0.74 -0.03 0.03 -0.03 information that was
-0.71 0.01 -0.01 -0.01 -0.01 0.01 calculated in the
-0.35 -0.44 -0.35 -0.35 0.35 0.35 first iteration for the

1.11 -1.11 1.11 1.11 1.11 ~1.42 row parity eqn’s.
With old -0.14 1.40 0.97 4.43 2.35 1.93 The extrinsic info
extrinsic =-0.02 2.65 0.80 4.08 -3.17 0.54 associated with the
subtracted off. 0.70 2.61 -2.47 -4.71 -2.60 -0.08 row parity eqn’s must
-1.65 -1.22 -2.75 -3.70 4.69 -0.28 be subtracted off.

2.13 -2.21 2.81 3.36 3.94 -0.39

New extrinsic 0.97 -0.14 -0.14 -0.14 -0.14 -0.14 This is the new
-0.54 0.02 0.02 0.02 -0.02 0.02 extrinsic information
0.08 0.08 -0.08 -0.08 -0.08 -0.70 associated with the
0.28 0.28 0.28 0.28 -0.28 1.22 rov parity eqn’s.
0.39 -0.39 0.39 0.39 0.39 -2.13

Iter. 2, rows 0.83 1.26 0.83 4.29 2.21 1.79 The new extrinsic
-0.56 2.67 0.82 4.10 -3.19 0.56 information has been
0.78 2.69 -2.55 -4.79 -2.68 -0.78 added in.

-1.37 -0.94 -2.47 -3.42 4.41 0.94
2.52 -2.60 3.20 3.75 4.33 -2.52
[t is important to recognize that the need to subtract off the extrinsic information from
the previous iteration necessitates storing the extrinsic information associated with each set

of parity equations from one iteration to the next.

2.5 What are hyper-codes?

Using the ideas presented thus far, various error-control coding schemes can be devised.
Unfortunately, such coding schemes are generally neither very powerful in terms of their
error-correcting ability, nor very practical in terms of the memory requirements associated
with their decoding. Several new techniques have been developed in this thesis, however,
which when combined with these existing ideas can produce coding schemes that have pow-

erful error-correcting capability and are also practical to implement. The most significant
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of these new developments are the following:

e Methods of constructing parity structures from parity equations that have much better
distance properties than simple N-dimensional parity cubes. The most significant

development in this area is the idea of “roll parity™.

e An enhancement to the approximate soft-in / soft-out decoder for parity equations
that significantly improves error-rate performance with iterative decoding. This en-
hancement is an appropriate scaling of the extrinsic information output by the max-

log-MAP decoder.

e Compression techniques that greatly reduce the amount of memory required to store

the extrinsic information.

The expanded family of coding schemes that can be created using these new ideas has been
given the name “hyper-codes”. The origin of this name is associated with the hyper-cube
parity structures commonly used as basic building blocks. The subsequent chapters describe

these new developments in detail.
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Chapter 3

Hyper-code structures

This section describes an approach to error-control coding based on multi-dimensional parity
structures. [terative decoding of these codes using MAP (maximum a posteriori probability)

techniques is described in the next section.

3.1 Multi-dimensional parity structures

The coding scheme is based on what can be called “simple parity equations™. This term is
used here to refer to a set of bits to which a single parity bit is added. in order to force the
overall parity to be either even or odd. Even parity means that there are an even number
of bits that are equal to one. Similarly, odd parity means that there are an odd number of
bits that are equal to one. For simplicity and concreteness, the remainder of this document
will always assume that the parity equations have even parity. Adopting a convention of
odd parity would offer no benefits and would introduce unnecessary complications.

Constructing a code using simple parity equations is very practical because highly effi-
cient iterative techniques can be used in the decoding process. This allows the development
of decoders that are both fast and inexpensive. The details of the decoding process are
described in the next section.

A simple parity equation is a one-dimensional structure. Higher-dimensional structures,
however. can be created by the appropriate arrangement of simple parity equations. For
example, if several rows of parity equations (each of equal length) are stacked one on top
of each other. and then a parity bit is added to each column of this arrangement, a two-
dimensional "plane” parity structure results. Note that the new row of parity bits for the

columns is itself a simple parity equation; that is, it will always have even parity.
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This process of creating higher-dimensional structures can be continued indefinitely.
If several “plane” structures are stacked. and parity bits are added across these planes
(creating an additional plane), a three-dimensional box-like structure results. [f several
box-structures are stacked. a four-dimensional structure is created. and so forth.

An important concept in coding theory is the minimum (Hamming) distance of a code.
This is the closest “distance” any two codewords can be from each other. where the “dis-
tance” is measured in terms of how many bits must be flipped in one codeword to produce
the other codeword. The minimum distance of a code gives. to some extent. an indication
of how effective the code will be at correcting errors introduced by the communications
channel. A trivial coding scheme consisting of only a simple parity equation has a mini-
mum distance of 2. A two-dimensional “plane™ parity structure. as described earlier. has a
minimum distance of 4. The three-dimensional structure has a minimum distance of 8. In
general. an n-dimensional “box™ structure has a minimum distance of 2".

The multi-dimensional parity structure described up to this point is not new and has

been studied in the scientific literature in some detail.

3.2 Motivation for more advanced code structures

With simple “box-like™ code structures. each increase in the minimum distance of the code
is accompanied by a significant increase in the block size. given the same code rate. For
example, consider the construction of code geometries where the code rate is required to
be 0.5 (or higher). A 4x4x4/5x3x5 three-dimensional structure has a minimum distance of
8 with a block length of only 64 information bits. Moving to a four-dimensional structure,
a 6x6x6x4/7x7x7x5 code has a rate higher than 1/2 and has a minimum distance of 16.
but now the block size has increased to 864 bits. more than 10 times larger than the three-
dimensional block. To achieve a minimum distance of 32 with a “box” parity structure,
a five-dimensional block would be required, such as a TxTx7x7x6/8x8x8x8x7 code. This
structure has a size of 14,406 information bits. These examples illustrate that although im-
pressive minimum distances are achievable with simple multi-dimensional “box” structures,
each increase in the minimum distance is accompanied by a large jump in the block size.
This raises the question as to whether it is possible to add extra parity bits to the basic

“box™ structure and increase the minimum distance, without incurring as stiff a block-size
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penalty as is associated with adding a whole new dimension.

3.3 Desirable properties for the extra parity

When adding extra parity to an N-dimensional parity hyper-cube. it is desirable for the extra
parity to have certain properties. First, the addition of the extra parity should increase the
minimum distance of the overall code. The minimum distance of a code is a significant.
though by no means the only, determining factor of a code’s error-rate performance, and so
a higher minimum distance will usually mean that the code will perform better. Second, it
would be advantageous for the extra parity bits to themselves have some sort of inherent
structure, assuming that they were arranged appropriately. There are two reasons why the
second property is advantageous. First, if the extra parity bits have some sort of inherent
structure, then the log-likelihood ratios (LLR's) associated with these extra parity bits can
be “improved™ during the course of the iterative decoding process. Such an improvement of
the LLR'’s aids convergence, which in turn results in better-error performance (for a given
number of iterations). Second. if the LLR's associated with the extra parity bits can be
improved during the decoding process. then tests can be performed to determine whether
a codeword has been reached. The ability to do such tests allows both early termination.
which increases average decoding throughput. and basic decoder failure detection for blocks
that did not terminate early.

[t is desired. therefore. for the extra parity to have these properties:

e The extra parity bits should increase the minimum distance of the code.

e The extra parity bits, if arranged appropriately, should have some sort of inherent
code structure. which allows them to be improved during the course of the iterative

decoding process.

This section presents guidelines for adding extra parity that makes the parity have the
second property: subsequent sections will go on to describe specific methods of adding
extra parity that adhere to these guidelines and also result in an increase in the minimum
distance.

Consider an N-dimensional parity hyper-cube. Such a structure can be viewed as a

collection of N-1 dimensional structures, each of which is itself a valid N-1 dimensional parity
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hyper-cube. Within each N-1 dimensional parity hyper-cube. any re-arrangement of N-2
dimensional units will not disturb the validity of the parity structure of the N-1 dimensional
unit. Thus. if parity is applied across the N-1 dimensional units. and the “mixing-up” of
the bits within each N-1 dimensional unit is limited to a re-arrangement of N-2 dimensional
units within each N-1 dimensional unit. then the extra parity bits will themselves form
a valid N-1 dimensional parity hyper-cube. assuming that they are arranged in a manner
consistent with how they were generated. This general approach to adding extra parity that
results in the extra parity itself having a code structure has been termed “shuffle parity”.
Further, it is important to recognize that the shuffled N-1 dimensional units across which
parity is applied need not necessarily come from the same N dimensional structure for the
extra parity bits to form a valid N-1 dimensional parity hyper-cube. The above description
is necessarily quite abstract. and so two examples will now be presented to clarify the
concept.

Consider adding 3 extra parity bits to a two-dimensional 2x2/3x3 code. making a

2x2/3x+4 code. The numbers are position indices.

Before After shuffling
0o 1 2 0o 1 2
3 4 5 1 2 0
6 7 8 2 01
a b ¢ <~ Will have even parity.

In the above example. the minimum distance of the code before the addition of the extra
parity is dm,n = 4. With the particular shuffling pattern used. the addition of the extra
parity bits increases the minimum distance of the code to d,n;n = 6. A simple proof of this

is shown below.

Patterns XX . X.X XX . X.X . XX . XX . -
before XX . X.X . XX XX . x.Xx . XX
shuffling ... ce. XX, X.X ... .XX  XX. X.X @ .XX
After XxX. X.X  XX. X.X . XX . XX .
shuffling x.x .xx ... ... XX. cee  X.X  .XX  XX.

e ve XX XX. .. X.X XX  XX. X.Xx

As a larger example, consider a two-dimensional parity square having a size of 5x5 /
6x6, meaning that 25 information bits have been arranged into a 5x3 pattern, and parity

bits have been added to each row and each column of this square, including a parity bit for
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the column of parity bits (which is also the parity bit for the row of parity bits), producing
a 6x6 “parity square”. For the 2-D case, the “N-1" dimensional units within which the
shuffling is restricted to are either the rows or the columns of the 6x6 square. The rows and
the columns are entirely equivalent. and so either one can be picked: for this example it will
be assumed that the extra parity will be applied across the rows (i.e. down the columns),
and so the shuffling will be restricted to be within each row. Further. the “N-2" dimensional
units that get shuffled are. for the 2-D case. individual bits. and there is only one dimension
along which the shuffling can occur. Thus. if the 6 bits making up each row of the original
parity square are shuffled. and then extra parity bits are added by applying parity across
these shuffled rows, the resulting row of six parity bits will itself have even parity, and hence
be a valid parity equation. Each row in the original parity square has even parity, since a
parity bit was added to ensure this. Shuffling of the bits within each row does not affect
the number of 1" bits in each row. and hence after shuffling, each row still has an even
number of *1” bits. Applying parity across the rows is equivalent to adding up the rows,
in a modulo-2 sense. This means that the new row of extra parity bits will necessarily have
an even number of ones. and hence be a valid parity equation.

An example of how a 6x6 parity square could be shuffled is shown below. The block on
the left is the parity square before shuffling, and the block on the right is the parity square

after the rows have been shuffled. The numbers are column indices. starting at 0.

0 1 2 3 4 S 0 1 2 3 4 S5
01 2 3 4 5 1 2 0 4 5 3
0 1 2 3 4 5 2 0 1 5 3 4
0 1 2 3 4 5 3 5 4 1 0 2
01 2 3 4 5 4 3 5§ 2 1 0
01 2 3 4 5§ 5 4 3 0 2 1

With this particular shuffling pattern. the addition of the extra row of parity bits in-
creases the minimum distance of the code from 1 to 6, and increases the number of rows
to 7. What has not been explained here is how the particular shuffling pattern was chosen.
Any shuffling pattern will produce an extra row of parity bits that has even parity; however,
only particular shuffling patterns will result in an increase in the minimum distance of the
code. The sections that follow will describe various ways of selecting shuffling patterns so
that the addition of the extra parity results in an increase in the minimum distance of the

code. A simple way of selecting a shuffle pattern is to shuffle “diagonally”. This approach

-
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is conceptually simple, but this method of shuffling is not optimal for all block sizes. A
somewhat more complicated but more general approach is the concept of using “rolling” to
shuffle. Using “rolling” as a means of shuffling produces good shuffle patterns for a wider
range of block sizes than simple diagonal parity, but the selection of an appropriate roll
pattern is more involved than using the ~diagonal” approach. Note that diagonal shuffling
is a special case of roll shuffling. Diagonal and roll parity will be described in more detail
in later sections.

[t is important to realise that diagonal parity. and more generally. roll parity. are simply
specific cases of “shuffle parity”. Shuffle parity is the more general and fundamental concept:
by shuffling N-2 dimensional units within N-1 dimensional units of an N dimensional parity
structure, and then applying parity across the shuffled N-1 dimensional units, the ertra parity

so generated will itself have an inherent N-1 dimensional code structure.

3.4 Diagonal parity

A highly effective and simple way of adding extra parity to N-dimensional “box” parity
structures is through the use of what will be termed “diagonal parity”. This is a special
case of shuffle parity introduced above. The shuffle pattern shown for the first example
in the preceding section was in fact a diagonal shuffling pattern. With diagonal parity,
parity equations are created that move across all dimensions at once. with modulo wrap-
around occuring whenever a side of the n-dimensional “box™ is encountered. This concept
is perhaps best explained using pseudo-code. The following pseudo-code segment illustrates

how diagonal parity could be applied to a three-dimensional parity structure.
Array0fBits[Len2+1] [Len1] [(Len0] // +1 is for diagonal parity bits
for StartInx0 = 0 to LenO-1

for StartInxl = 0 to Leni-1
Inx0 = StartInx0

Inx1l = StartInxl
Inx2 = 0
Parity = 0

while(Inx2 < Len?2)
Parity = Parity XOR Array0fBits(Inx2] [Inx1][Inx0]
Inx0 (Inx0 + 1) MODULO LenO
Inx1 (Inx1 + 1) MODULO Lenl
Inx2 Inx2 + 1

end vhile

Array0fBits[Inx2] [Inx1] [Inx0] = Parity

end for
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end for

This code segment illustrates that in moving along a diagonal parity equation. the index
of each dimension is incremented by one, with modulo wrap-around occuring when an index
reaches the end of a dimension. Since diagonal parity can be applied to parity structures
of arbitrary dimension. the term “hyper-diagonal parity” is sometimes used to emphasize
that the technique is not restricted to two or three dimensional parity structures.

The application of diagonal parity can also be expressed in mathematical notation as
follows. 4 is a three-dimensional array with dimension lengths [. .J and K+1. bit addition
is modulo-2. and array index arithmetic is modulo the length of each respective dimension.

K-1

Ak = ) Aivkgekk ¥ i€0.1-1], je[0.J-1] (3.1)
k=0

With diagonal parity. the equations are applied, in a certain sense. along a particular
dimension of the basic box structure. This dimension is termed the “primary diagonal
dimension”. [n the example above. the highest dimension (i.e. the dimension corresponding
to Inx2) is the primary dimension. The total number of diagonal parity equations (and
hence the number of diagonal parity bits) is equal to the product of the lengths of all of
the dimensions. except for the primary diagonal dimension. This means that if the original
“box” parity structure does not have sides of equal length. choosing a different primary
dimension can result in a different number of diagonal parity bits.

Once the “primary diagonal dimension™ has been established. there is still a choice as to
the direction or orientation of the diagonals. With an n-dimensional parity structure, there
are 2"~! different possible directions for the diagonal parity. However. since a box structure
is symmetric along every dimension. the different diagonal directions are equivalent. The

direction does become significant. however, if diagonal parity is applied more than once.

3.4.1 Preferred geometry for diagonal parity

While in concept diagonal parity can be applied to any shape of n-dimensional parity
structure, it has been found that applying a certain constraint to the overall shape makes
the diagonal parity more effective. This constraint is that every dimension of the parity

structure be equal in length. and that this length be odd. That is, n-dimensional “cube”
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structures with odd-length sides work well with diagonal parity. Note that having odd-
length dimensions for the diagonal parity means that the number of information bits per
dimension is even. This is an alternate way to express the constraint. Note that shortening
can be used. however. to adjust the block size while still satisfying this constraint. This is
discussed in greater detail in section 3.5.

This constraint limits the selection of block sizes that can be created using diagonal
parity.

The reason why odd-length sides are preferable relates to the modulo wrap-around
of the diagonal parity equations. An understanding of this behaviour can be gained by
analysing the simple two-dimensional case. Consider applying diagonal parity to a 2-D
parity structure (i.e. a parity square). [t is desired to show that if the sides of the square
are odd in length. then the addition of diagonal parity will increase the minimum distance
from 4 to 6. For the sake of concreteness, it will be assumed that the diagonal parity
equations all begin in the first row. and that they extend down and to the right. There
is no loss in generality in making this assumption. It is helpful to keep in mind that no
diagonal parity equation will ever return to a row through which it has already passed, and
likewise for the columns. The minimum-distance error patterns for 2-D parity structures are
rectangles and the minimum distance is 4. Consider the diagonal parity equation passing
through the upper-left error location. If the error pattern is not a square. this diagonal
equation will miss the lower-right error location. This is the only other location it could
hit. since the other two locations either share a row or a column with the original location.
Similarly, the diagonal parity equation passing through the lower-right error location will
miss the upper-left location if the pattern is not a square. Thus, if the error pattern is a
rectangle but not a square, the addition of diagonal parity will increase the weight of the
error pattern to at least 6. On the other hand, if the original error pattern is a square,
both the upper-left and lower-right error locations will land in the same diagonal parity
equation, and so these locations do not contribute any increase to the overall distance. In
this case, the interaction of the other two error locations with the diagonal parity equations
must be examined to determine whether they will result in an increased distance. Consider
the diagonal parity equation passing through the upper-right error location. The only way

it could possibly encounter the lower-left location is after wrap-around (since the diagonals
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go down and to the right). For this diagonal to pass through the lower-left location, the

following relation must be true:
r+Ar+Ay—-LENGTH==: (3.2)

where r represents the column number of the left side of the error rectangle. Az and Ay
are the lengths of the sides of the error rectangle. and LENGT H represents the length of
the sides of the original parity square to which the diagonal parity was applied. Since the

error pattern is a square Ar = Ay. and so this relation can be re-written as:
2Nz = LENGTH (3.3)

From this equation, it is apparent that if LENGTH is odd. the relationship cannot hold
true. and hence the minimum distance of a “2-D plus diagonal™ structure is indeed 6.
This makes it clear why the odd-length specification is important: it ensures that if two
(minimum-distance) error locations end up in the same diagonal parity equation. then the
other two error locations will fall in distinct diagonal equations.

The preceding argument can be extended to higher-dimensional parity structures to show
that if a minimum-distance event occurs within the original structure. then the addition
of diagonal parity almost doubles the distance (only two error-locations can be paired in
the diagonals). This result. however. is not sufficient to allow any conclusions to be made
about the minimum distance of the overall code. This is because it is also necessary to
consider error events within the origina' narity structure other than the minimum distance
events. In the 2-D case. it was only desired to show that the addition of diagonal parity
increased the minimum distance from 4 to 6, and so it was not necessary to consider any
error patterns within the original square other than distance-4 patterns. There can be
no distance-3 error patterns within a parity square since each row must have even parity.
In contrast, for the 3-D case. if it is desired to show that the addition of diagonal parity
increases the minimum distance from 8 to 14. then distance-12 error events within the
original cube must be analysed in addition to the distance-8 events. Note that distance 9,
10, 11, and 13 events cannot happen in the original parity cube. Distance-10 cannot occur
because this would mean that there would be 5 error locations in a plane. The need to
consider other error patterns within the basic parity structure makes the analysis of higher-

dimensional structures much more difficult than the 2-D case. Distance-12 error patterns
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have been found, however, for the 2x2x2/3x3x4 cube-plus-diagonal code. For example. the
following distance-12 error pattern within a 3x3x3 parity cube will not go up in weight with
the addition of diagonal parity (applied either upper-left to lower-right or upper-right to

lower-left. moving through the planes left to right):

It is believed. however, that the existence of these distance-12 error patterns relates
to the fact that, in this example. both the number of rows and the number of columns is
divisible by 3. An exhaustive computer search was performed on a 4x4x4/5x3x6 cube-plus-
diagonal code structure and the minimum distance of this structure is 14. not 12. This
leads to the conjecture that if the lengths of the sides of the cube are not divisible by 3 (nor
2 as discussed earlier). then the minimum distance of the cube-plus- diagonal code will be
I4. Further. with the appropriate roll interleaving (to be discussed in section 3.6). it may
be possible to achieve dp,;, = 14 even when the lengths of the sides of the cube are divisible
by 3 by ensuring that no roll-difference has two roll-counts equal to plus (or minus) 1/3 of
the length of the corresponding side.

For the 4-D case. an exhaustive computer search of a 2x2x2x2/3x3x3x+4 4-D plus diagonal
code structure found a minimum distance of 30. Also., when simulating larger 4-D block
codes. if the decoder converged to a codeword which was not the correct codeword, the
distance was calculated between the correct codeword and the decoded codeword. In all of
these cases, no distance less than 30 was ever observed.

The analysis presented in this section all reduces to the following simple conclusion about
applying diagonal parity: “Use odd-length hyper-cubes.” That is. the preferred geometry for
diagonal parity is an n-dimensional structure whose sides are all of equal length (i.e. a hyper-

cube), where this length is odd. Note that an odd overall length means that the number
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of information bits per dimension is even. It will be shown later (in section 3.5) that these
regular-shaped structures can be “shortened”. so that codes can be constructed having any

arbitrary block length.

3.4.2 Properties of diagonal parity

The diagonal parity bits. if arranged appropriately. form an n — 1 dimensional parity “box”.
For example, if the basic parity structure is a cube. then the diagonal parity bits will form
a parity square. That is. all of the rows will have even parity. and all of the columns will
have even parity. This means that each diagonal parity bit is involved in not just one but
n different parity equations. This property can be exploited in a MAP decoder. allowing
the diagonal parity LLRs to be “improved” during the iterative decoding process. Being
able to “improve” the extra parity bits helps the decoder both to converge to the correct
(i.e. closest) codeword, and to converge faster. Also, if the extra parity bits could not be
improved. the implementation of a simple convergence test (see section 4.7) would no longer
be as straight-forward or effective.

In order to exhibit this property, the diagonal parity bits simply have to be arranged in
a manner consistent with the diagonal parity equations themselves. There is more than one
placement that will give rise to this property: one arrangement that will work is to place
the parity bits as though each diagonal ~continued™ one bit further.

To understand why this property arises requires analysing parity structures in greater
detail. Consider a single parity equation (i.e. a “row” of bits having even parity). Any
cyclic shift of this row will yield another valid parity row. In fact. regardless of how the
bits in the row are ~“mixed-up”. the result will still be a valid parity row. Further, if two
parity rows are “added” modulo-2, the result will also be a valid row. since 1’s are only
eliminated in pairs. Similarly, consider a parity plane. which is a rectangle of bits with each
row and each column having even parity. Any re-arrangment of the rows and/or columns
will produce another valid parity plane. and any modulo-2 sum of parity planes will produce
another parity plane. These properties naturally extend to higher dimensions.

Now consider the specific case of applying diagonal parity to a three-dimensional (i.e.
cube) parity structure. The generation of the parity bits is equivalent to adding (modulo-2)

specific re-arrangments of the parity planes. The first plane is left unchanged. In the second
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parity plane, the rows are effectively “rolled” one row up. and the columns are “rolled” one
column to the left (this assumes a particular direction of the diagonal). In the third parity
plane, the rows are rolled two rows up. and the columns are rolled two columns to the
left. and so forth for the rest of the planes. The re-arrangement of each plane maintains
the parity structure: each row still has even parity. and each column still has even parity.
Further. adding up valid parity planes produces another valid parity plane. Thus, the
diagonal parity bits naturally form a valid parity plane.

The ability to “improve™ the extra parity bits is a key advantage associated with using
diagonal parity as compared with using a random interleaver followed by a face of parity
(this approach is described later). With a random interleaver. the extra parity bits do not
inherit as much parity structure. and hence each bit is involved in fewer parity equations.
This makes it more difficult to improve the estimates associated with these bits during the

decoding process.

3.5 Shortening the block

Up to this point. diagonal parity has only been discussed in the context of N-dimensional
blocks with equal (and odd) length sides. With this restriction. the choice of block size is
very limited. For example. consider applying diagonal parity to 3-D parity cubes. The cube
dimensions that can be used are 2x2x2/3x3x3. 4x4x4/5x5x5. 6x6x6/7x7x7. 8x8x8/9x9x9.
and so forth. The corresponding block lengths are 8. 64. 216 and 512 information bits. and
the corresponding rates including the diagonal parity bits are 0.22. 0.43. 0.55 and 0.63. This
shows that the choice of available block sizes and rates is limited. with large gaps between
one size and the next larger size.

There is an easy way, however. to “fill in” these gaps. Starting with a basic “regular”
structure (i.e. an n-dimensional parity structure with equal and odd length sides), the block
can be “shortened™ by forcing any number of information bits to zero. Of course, any bits
that are always zero are not transmitted, and in the decoding operation. these bits are
simply skipped (since zero bits do not affect the parity). Moreover. if the choice of forced
information bits is such that certain parity bits are always zero. then these bits can also be
dropped. and ignored in the decoding process.

This block “shortening™ is best understood by means of an example. Consider, for
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instance, an 8x8/9x9 parity square to which diagonal parity is added. If 8 information bits
are always forced to zero. the block size is reduced from 64 to 36 information bits. Also, if
these bits are chosen so that they all come from a single row. then the parity bit associated
with this row will always be zero. and so it does not need to be transmitted (which helps the
code rate). The overall result is an 8x7/9x9 code. which has a block size of 56 information
bits and a code rate of 0.69. The block size notation used here indicates the dimensions of
the code structure with diagonal parity included. This notation is convenient for defining
the code structure. and will be used in later discussions as well.

The example above illustrates one means of “shortening™ a block: namely, reducing the
length of the primary diagonal dimension of the structure. This approach has the advantage
of eliminating all of the parity bits associated with the rows (or planes. etc. depending on
the dimension of the structure) that were eliminated. This makes the code rate decrease to
a lesser extent than if only information bits had been eliminated.

As alluded to earlier. the penalty associated with “shortening™ a regular (i.e. equal-
length sides) structure is a lowering of the code rate. For this reason. when selecting a
code geometry for a particular application. the degree of shortening should be kept as low
as possible. As an example, consider choosing between two “3-D + diagonal™ structures:
a 6x6x6/7x7x8 cube-plus-diagonal code. and a 8x8x4/9x9x6 shortened cube-plus-diagonal
code. The first code has a block size of 216 information bits and a code rate of 0.55. With
the second code. though the block size has increased to 256 bits. the code rate has in fact
dropped to 0.53. If an application could use either code. the 6x6x6 code would be the
preferred choice.

The “shortening” of code blocks by forcing information bits to be zero is of course
not limited to code structures using diagonal parity. [t has been described in relation to
such structures because of the restrictions on the dimension lengths required to make the

diagonal parity work most effectively.

3.6 Roll interleaving

Diagonal parity is a highly effective way of increasing the minimum distance of basic parity
“boxes”. Diagonal parity has the added advantage that the extra parity bits form an n-1

dimensional sub-codeword, and this property can be used to aid decoder convergence. The
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limitation of diagonal parity, however. is that for it to be most effective. the size of the
basic parity box has to satisfy a certain criterion: namely. the total length (with parity)
of each side must be the same (except for shortening) and odd (see section 3.4.1). This
restriction introduces large gaps in the block sizes and code rates that can be created using
diagonal parity. The diagonal parity concept can be generalized. however. in a manner
that eliminates this size constraint. while still achieving essentially the full performance
improvement offered by diagonal parity. This generalization is called “roll” interleaving,

and is depicted in Figure 3.1.
3.6.1 Explanation using a simple example

The concept of “roll” interleaving can best be explained using an example. Consider a parity
cube as the basic parity structure. to which it is desired to add extra parity bits, with the
objective being to increase the minimum distance of the code. For the sake of concreteness.
consider a 3x3x3/4x4x4 parity cube. Observe that the total length of each side of this cube
is even. making it a poor candidate for diagonal parity. A good starting point in creating the
extra set of parity equations is to specify that, for each parity equation. every bit must have
a distinct column index. a distinct row index, and a distinct depth index. This requirement
ensures that no two parity equations making up the overall code overlap by more than 1 bit.
Further. let the equations be as long as possible. in order that the reduction in code rate be
as small as possible. This means that the new parity equations will all have length 4, since
there are only 4 different depth indices. row indices. and column indices to choose from.
Finally, if all bits are to be treated in the same manner, the extra set of parity equations
must cover all of the bits in the regular cube. and this means that there will be a total of
16 new parity equations in the extra set being designed.

Since the order of bits within a parity equation is of no consequence. each parity equation
can be re-ordered so that the first bit comes from the first depth plane. the second bit from
the second depth plane. and so forth (each parity equation includes one and only one bit
from each depth plane). This means that generating the extra parity bits can be thought
of as interleaving within each depth plane of the original parity cube. and then applying
parity across these new planes. Further, the order of the parity equations themselves is

irrelevant, which means that they can be arranged in the order of the bits in the first depth
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Figure 3.1: A 3D parity box to which two layers of roll parity have been added, resulting
in a 6x6x5/7x7x8 code structure.
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plane. With this arrangement. the first plane remains unaltered. and only planes 2.3, and 4
need interleaving. This makes sense since it is only the relative positioning of the bits that
is of consequence.

Now, it is required to determine a way of interleaving each plane (other than the first
plane) in 2 manner that will assure that when parity is applied across the planes. each new
parity equation created in this manner will have each bit coming from a different row and
different column of the original parity cube. Having only one bit come from each depth
plane has already been taken care of by interleaving only within each plane and applying
parity across the new interleaved planes. A way this can be achieved is by “rolling” the rows
and columns of each depth plane by a different amount. =Rolling” simply means shifting
with modulo wrap-around. For example. the second plane could be rolled up by one row
and rolled left by one column. the third plane rolled up by two rows and rolled left by two
columns, and the fourth plane rolled up by three rows and rolled left by three columns.
When the parity is applied across these new planes, each equation so created will have one
and only one bit coming from each row and column of the original parity cube. Further, the
new plane of parity bits so created will have even parity along each row, and even parity
along each column; that is. it is a valid two-dimensional sub-codeword. This results because
the rolling of the planes does not disrupt the parity properties of the plane: each row still
retains even parity, and each column still retains even parity. and the modulo-2 addition
(xor-ing) of valid parity planes produces another valid parity plane. Recall that producing
parity bits that themselves have a regular parity structure helps the convergence of the
decoder, which in turn improves error-rate performance.

Next, let us examine the different roll patterns that are available for this simple example.
As stated earlier. the parity equations and the bits making up these equations can always
be re-arranged in such a way so that the first plane can always be left unaltered (i.e. roll the
rows by zero and roll the columns by zero). This leaves only planes 2. 3. and 4 to consider,
and the available roll counts for both the rows and columns are 1. 2, and 3. Note that a roll
of 4 is the same as a roll of 0 since the sides of the cube have length 4. Since all planes are
equivalent. the roll pattern for one of the dimensions can simply be assigned in ascending
order. Choosing rows, this means that the second plane is rolled up by one row, the third

plane is rolled up by two rows, and the fourth plane is rolled up by three rows. This leaves
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only the column rolling to be assigned. The available choices are as follows. represented as

(row-roll, col-roll):

a: (0,0) (1,1) (2,2) (3,3
b: (0,0) (1,1) (2,3) (3,2)
c: (0,0) (1,2) (2,1) (3,3)
d: (0,0) (1,2) (2,3) (3,1)
e: (0,00 (1,3) (2,1) (3,2
£f: (0,0) (1,3) (2,2) (3,1)

Not all of these are distinct choices. The roles of the rows and columns in the original
parity cube can be swapped and the cube is still the same: this makes cases d and e
equivalent. Further. if the columns are rolled right instead of left. the end result is still
the same: this makes cases a and f equivalent. b and e equivalent. and ¢ and d equivalent.

Combining all of this leaves only two cases remaining for this simple example:

a: (0,0) (1,1) (2,2) (3,3)
b: (0,0) (1,1) (2,3) (3,2)

At this point. a critical observation can be made. Case a is identical to applying diagonal
parity. That is. diagonal parity is simply a special case of roll interleaving. Moreover, when
considered from this viewpoint. it becomes clear why the performance of diagonal parity
degrades when the total lengths of the sides of the basic box structure are the same and
even. The diagonal parity case includes a (2.2) roll pattern for one of the planes; that is,
the rows are rolled by half the total number of rows, and the columns are rolled by half the
total number of columns. What this means is that a square error pattern within a plane
can land exactly on top of itself after rolling. This in turn means that a weight-8 error
pattern can exist in the original cube which will not generate any extra parity even after
roll interleaving and adding the extra parity plane. Thus. case a has a minimum distance
no greater than that of the original parity cube; that is, d,;, = 8.

This leaves case b as the only remaining roll assignment to be considered. In this case,
however, there are no two planes that have a “roll-difference™ of (2,2). Note that the roll-

difference between each pair of planes must be considered. and not just the roll-difference
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between the first plane and the other planes. Since case b has no (2.2) roll-difference between
any two planes, there is no possibility of a weight-4 error pattern in a plane landing on top
of itself after rolling. This in turn means that when the basic parity cube has a minimum-
distance error pattern. at most two error locations from one plane will line up with two
error locations from another plane. Thus, the extra parity bits added after rolling will
increase the weight of the error pattern by four. to a total of twelve. Finally. the lowest-
weight error patterns in the original parity cube. after the weight-8 patterns. are weight-12
patterns. There can be no weight-10 patterns. as pointed out in section 3.4.1. In conclusion,
the (0,0) (1,1) (2,3) (3,2) roll pattern for the 3x3x3/4x-{x4 parity cube results in an
overall code having a minimum distance of 12. even though the lengths of the sides of
the cube are even. This has also been confirmed using an exhaustive computer search
of all codewords for this case. Note that the asymptotic coding gain for this example is
10 * log,4(12 * 27/80) = 6.07 dB. This is fairly impressive for such a simple code with such

a short block size.

3.6.2 Generalization to larger cubes

The analysis given above shows that. for parity cubes, a “roll” interleaver having no roll-
difference equal to (n/2. n/2) will produce a code structure having a minimum distance of
12 (*n” refers to the total length of the sides of the cube). A way of assigning roll values for
arbitrary-size cubes such that this requirement is always met is as follows: Begin with roll
assignments of (0,0) (1,1) (2,2) ... etc. up to but not including a roll assignment
of (n/2,n/2). At this plane. increase the column roll count by one. giving (n/2, n/2+1).
Continue by increasing both the row and the column counts by one until the last plane
is reached. The last plane uses the column count that was skipped, resulting in a roll
assignment of (n-1, n/2). Another way of stating the above approach is that the last n/2
roll numbers for the columns are themselves rolled. and we have rolled them by 1 position.
Observe that using this approach would give roll-assignment b in the example described
earlier.

How is it known that no roll-difference in such an assignment scheme will equal ex-
actly (n/2,n/2)? The first set of planes have roll assignments of (0,0) (1,1) (2,2)

(n/2-1, n/2-1). Certainly, no pair of planes chosen from within this first set can
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have a roll-difference of (n/2,n/2). since the largest possible roll-difference is (n/2-1,
n/2-1). Similary, from the second set of roll assignments. (n/2, n/2+1) (n/2+1, n/2+2)

(n-1, n/2), no pair of planes can be chosen that gives a roll-difference of (n/2,n/2).
Finally, a roll-difference of (n/2,n/2) cannot occur between the two sets because of the

offset roll in the second set.
3.6.3 Generalization to boxes with sides of different lengths

The above approach also generalizes to boxes with sides having different lengths. The only
restriction that is required is that the depth dimension be no longer than either the row
or column dimensions. With this restriction. there are enough different roll possibilities for
both the row and column dimensions that each depth plane can have a distinct row roll
count and a distinct column roll count. Again. the row and column roll counts should be
assigned so that no depth plane has both a row roll count equal to half the number of rows,
and at the same time. a column roll count equal to half the number of columns. in order
to achieve a minimum distance of 12. [t is interesting to note that if the number of rows
or the number of columns is odd. then standard diagonal parity will automatically satisfy
this requirement.

Being able to adjust not only the length of the depth dimension. but the length of the
other dimensions as well, further expands the range of code block sizes and rates that can
be created using roll interleaving. Of course. if the desired block size can be created using
a box having equal-length sides (i.e. a cube), then this is preferable to a box having sides

of differing lengths, since the rate will be higher.

3.6.4 Four or more dimensions

All of the discussion up to this point has only considered roll interleaving as applied to three-
dimensional parity structures. The concept easily extends to higher dimensional parity
structures, and will be analysed here for the case of four-dimensional parity hyper-cubes.
To simplify this description. only four-dimensional parity structures with sides of equal
length are considered in the following discussion. but the points mentioned in the previous
section relating to unequal-length sides apply also to parity structures of four and more

dimensions.
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As in the 3-D case. the interleaving is performed only within the parity structures
associated with the highest dimension. Specifically, this means that the interieaving is
restricted to within each cube. The first cube is left unaltered. and only the other cubes
are interleaved. The roll patterns for the depth planes within each cube can be assigned in
ascending order, just as the row roll counts were assigned in the 3-D case. This leaves the
row roll counts and the column roll counts to be assigned.

As in the 3-D case. the roll-differences between each pair of cubes must be considered.
and it is roll counts equal to half the length of the associated dimension that are of concern.
If no roll-difference has all three roll counts exactly equal to half of the length of each
corresponding dimension. then the minimum distance of the 4-D hyper-cube plus extra
parity is at least 24. This requires that any given roll difference have at most two roll
counts equal to half of the lengths of the associated dimensions. If there is a roll-difference
that has two “half” roll-counts. then the minimum distance of the composite code structure
will be 24. This results because if the original hyper-cube has a minimum-distance error
pattern (weight-16), after roll interleaving, four error locations from one error “box” can end
up lining up with four error locations from the other error “box™. Performance can perhaps
be further improved by imposing an even stronger restriction: namely. that any given roll-
difference have at most one roll-count equal to half of the length of the associated dimension.
While it has not been proven that this stronger restriction increases the minimum distance
above 24. at the very least the number of codewords at this distance is reduced. What can
be stated, however. is that the minimum distance of the overall code is certainly no greater
than 28. even with this stronger restriction on the roll assignment. if any roll-difference has
a roll count of half the dimension length.

[t is interesting to note that if none of the roll differences have a roll count equal
to exactly half of the length of the associated dimension, then minimum distance error
patterns within the original 4-D hyper-cube increase in weight to at least 30 after roll
interleaving and adding the extra parity. This is the case when diagonal parity is used
with a four-dimensional hyper-cube with sides of odd length. Of course, error patterns
other than minimum-distance events within the original 4-D hyper-cube would have to be
considered before one could conclude that such composite parity structures do indeed have

a minimum distance of 30. As mentioned in section 3.4.1. however, a computer search
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of a 2x2x2x2/3x3x3x4 4-D hyper-cube-plus-diagonal code determined that the minimum
distance for this simple case is indeed 30. This suggests that hyper-cubes with odd-length
sides to which diagonal parity is applied may have a performance advantage over hyper-
cubes with even-length sides. even with an appropriate roll interleaver.

As an example. the following is a good roll assignment to use with a 4-D hyper-cube of
size 3x3x3x3/4x4ixix4: (0,0,0) (1,1,2) (2,3,1) (3,2,3)

[n conclusion. when selecting a roll assigment for 4-D hyper-cubes. the values should
be selected so that no roll difference has more than one dimension with a roll count equal
to exactly half of the length of the dimension. With such a roll assignment. the minimum
distance of the overall code is at least 24. and possibly as high as 28. It could also be as high
as 30 if all sides are odd. It might be possible to impose even more stringent restrictions on
the selection of roll counts that would further improve performance. but none are known of

at this time.

3.6.5 Two dimensions

Roll interleaving offers no advantage over standard diagonal parity for 2-D parity squares.
even when the lengths of the sides are even. This is because if the sides of the square are
even in length. it is impossible to avoid a roll-difference of half of the length of the side,
regardless of the roll assignment chosen. It is a roll-difference of half of the length of a
side that allows a square error pattern to become another square error pattern after roll-
interleaving, keeping the minimum distance at only 4. For parity squares with sides having
odd length. diagonal parity achieves dm;n = 6. and this is the most that can be achieved

with one extra row of parity bits. regardless of the interleaver chosen.

3.7 Random interleaving

Another way of adding extra parity bits (and effective distance) to an existing code structure
is by using random interleaving. The concept involves starting with one code structure (the
first layer), randomly interleaving these bits, and then arranging them into some form onto
which more parity is applied. creating a second code structure (the second layer). That
is, the channel bits from the first code serve the purpose of information bits for the second

code. Since the interleaving is random, the minimum distance of the aggregate code cannot
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be established, but the idea is that the -effective distance™ of the code approaches the
product of the minimum distances of the first-layer and second-layer codes.

In this discussion, the terms “first-layer code™ and “second-layer” code are being used,
rather than using “inner code™ and “outer code”. In conventional usage. the term “inner
code” refers to the code closest to the channel, and “outer code™ refers to the code furthest
from the channel [9]. In the code structures being described here. however. the second-layer
code is geometrically “outside™ of the first-layer code, and so there is potential for confusion
if "inner/outer” terminology was used. Moreover. the “layer” terminology generalizes easily
to more than two layers. Also. the order of decoding in the receiver is arbitrary and iterative,

making the usual inner/outer terminology inappropriate.
3.7.1 Configurations of random interleaving
There are many possible variations when using random interleaving.

e Not all of the bits of the first-layer code need necessarily be involved in the second-
layer code. For example. an interleaving scheme might only randomize the information
bits from the first code (i.e. the parity bits from the first layer are not included in the
second layer). This is often called “parallel concatenated coding™. When all of the
bits from the first layer are used in the second layer. the technique is often referred

to as “serial concatenated coding”.
e The second layer of coding need not resemble the first layer of coding.

e Parity structures in the first and/or second layers can be repeated. When only a
single layer of coding is being used. repetition serves no purpose. but with random
interleaving, repetition can become quite useful. To be completely general, the first
and/or second layers could even consist of a mix of different parity structures. Rep-
etition is useful because random interleaving tends to work better as the number of
bits being interleaved increases. Using repetition allows the interleaving to involve a

large number of bits even if the parity structures being used are small.

e The set of parity bits applied before or after interleaving need not be “complete”. A

situation could arise where, for code rate reasons, it is convenient to omit one or more
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of the parity bits that would normally be associated with the first or second layer

coding structures. Deleting parity bits is called puncturing.

e The interleaving can be completely random. or constrained in some manner. For
example, consider a 2-D first-layer code. and a second-layer code structure consisting
of repeated 1-D codes (i.e. a collection of simple parity equations). In such a case.
it might be advantageous to restrict the randomization of the first code to within
each row. and then orient the equations of the second-layer code along the columns.
The rationale behind such an approach is that error locations must occur in pairs
in the rows. and hence by constraining the interleaving to within each row. any two
error locations within a row cannot both end up in a single column of the randomized

structure.

e Random interleaving can be used more than once in constructing a code geometry

(i.e. the code can have more than two ~layers”).
3.7.2 Analysis of a simple code

[t is instructive to examine in greater detail a simple code structure that employs random
interleaving. Consider a 5x5/6x6 “plane™ parity structure as a first-layver code. which is
then randomly interleaved and formed into a 6x6/7x7 plane structure. The overall code is
a 5x3/7x7 code. A simple argument shows that the minimum distance of such a structure
cannot be greater than 10. regardless of the interleaver chosen. Pick any two “info” bits
from any parity equation of the second layer. Map these two bits back to the first-layer
code (i.e. de-interleave the two bits). A minimum-distance (i.e. weight=4) error pattern
can always be created that includes two specific locations. The other two locations making
up the error pattern in the first layer could end up anywhere in the second layer (other
than on top of the original two bits selected). At best. these two locations would end up in
distinct rows, in columns different than those where the first two bits ended up. Thus, the
minimum distance of the aggregate code cannot be greater than 10.

In this example, there will always be an even number of ones in the “information bits” for
the second-layer code (since the bits from the first-layer code will always have even parity).

This means that the corner parity bit in the second code will always be a zero. Since the
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value of this bit is independent of the message sent, there is no need to transmit it (thus
saving the associated overhead). However, because the second-layer corner parity bit is
redundant, the second-layer code is in some sense multiplying the first-layer code distances
by a factor of 3, and not 4. Note that the row and column parity of the second-layer code
will both be even. This can be used in the decoding process to improve these parity bits.
even without the corner parity bit.

The above arguments do not hold if multiple codes are interleaved together. Intuitively.

one can see why performance should improve in such cases.

3.7.3 Observations

Some observations can be made about the use of random interleaving.

The larger the block size. the more effective random interleaving becomes. This property
arises because as the block size becomes larger. there is less chance of two errors from the
first-layer code ending up in a single parity equation of the second-layer code. As an
example. consider the 5x5/7x7 2-D 2-layer code discussed earlier. Given any minimum-
distance error pattern in the first-layer code, the probability that each of the four error
locations will end up in distinct rows in the second-layer code is:

36«30 « 24 « 18

36+35+31233 033 (34)

which is quite low. By comparison. if the first-layer code was repeated say - times. then the
four error locations would be distributed amongst 21 different rows. and so the probability
that they all would end up in distinct rows is much greater:

144+ 138 # 132+ 124 )
144 « 143 » 142 = 141 0-80 (3.5)

There are other factors involved here: multiple repetitions in the first-layer code could have
error patterns, and the first-layer error patterns need not be minimum-distance patterns.
The analysis given is very rudimentary, but nonetheless provides some insight into why
random interleaving becomes more effective as the number of bits involved becomes larger.
This does not imply, however, that the minimum distance of the larger code is necessarily
any greater than that of the smaller code. only that the error-rate performance will be
better. If 36 repetitions were used, however, random interleaving would no longer be neces-

sary; instead, complete interleaving could be used, where only one bit from each first-layer
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repetition ends up in any given second-layer repetition. Such interleaving would indeed
guarantee a minimum distance equal to the product of the distances of the component
codes (4 4 = 16). As the number of repetitions is increased in a coding scheme using
random interleaving, the error performance gradually approaches that of a code structure
using complete interleaving. (The “complete™ interleaving example given here is equivalent
to a 5x3x6x6/6x6x7x7 4-dimensional code. and so does not represent a new code. but simply
a different viewpoint).

Minimum distance is only one of the contibuting factors to error rate performance:
the other codeword distances are also factors. as well as the number of codewords at each
distance. The minimum distance becomes increasingly important in determining the error
performance of the code as the SNR increases. Often, however. at the operating SNR, the
minimum distance of the code is not the determining factor of the error-rate performance.
This is especially true when there are very few codewords at the minimum distance relative
to the total number of codewords.

Random interleaving is often appropriate as the last component of an aggregate code
structure. A typical coding scheme might consist of an n-dimensional parity structure
with diagonal parity. that is randomly interleaved and arranged into a set of simple parity
equations. The number of parity equations in this final layer is completely flexible. and so
this layer can use up all of the parity bits that remain (the total number of parity bits that
can be used may be determined by the desired code rate). In this way. the “random™ parity
layer enhances the distance properties of the code, while at the same time allows for fine
adjustment of the code rate. Further. the set of parity bits associated with this last layer
will always have even parity since the original structure was forced to even parity. This
means that the final set of parity bits can be treated as a simple parity equation in the
iterative decoding process. In other words, each of these bits is involved in not just one,
but two different simple parity equations.

It can often be counter-productive to try to get “too much” from a second-layer code.
For an increase in the complexity of the second-layer code to be worthwhile, the increased
error-correcting ability of the code must more than make up for the loss in code rate. For
this reason, a simple set of one-dimensional parity equations may often be the best choice

as the final coding layer.



For some code structures. computer searches can be performed to find a random in-
terleaver that meets a particular minimum-distance requirement. For example. for a two-
layer, two-dimensional repetition code, a program was developed that evaluates whether
the overall code has minimum distance 4. 6 or 8. While this task may at first appear to
be computationally intractable. culling techniques can be employed that make this process
feasible. Note that without such an evaluation of a potential interleaver. the only guarantee
that can be made about the minimum distance of the aggregate code is that it is at least
4. In some instances (specifically. codes having only two repetitions) no random interleaver
could be found that would give a minimum distance of 8: only d,,,, = 6 could be guaran-
teed. In these cases. however. the number of distance-6 patterns was small. and if the block
could be shortened by a few bits. these patterns could be eliminated. thereby guaranteeing
a minimum distance of 8. This shows that block shortening can in fact be very useful when

the code structure includes random interleaving.
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Chapter 4

Decoding of hyper-codes

4.1 Log-likelihood ratios (log-MAP)

One natural way to express MAP calculations is in terms of probability values. If MAP
operations are implemented in this form. however, problems can be encountered associated
with finite-precision arithmetic. In a MAP decoder. these precision problems can result
in a degradation of the error-rate performance. It is possible. however. to greatly reduce
these precision problems by not working with the probabilities directly. but rather with
quantitites called ~log-likelihood ratios™ (LLRs). These quantities are commonly used in
MAP decoder implementations. The LLR of a probability p is defined as:

llr = log (ﬁ) (4.1)
[f the probability p was identically zero or identically one. the above expression would be
ill-defined. A physical communication channel. however. can never provide such absolute
certainty, and hence these special cases are never really an issue.

Consider now the calculation of the LLR for a particular channel bit. [t will be assumed
that the signal component at the receiver output is £+/E, (i.e. binary antipodal signaling
where E. is the energy per channel bit), and that the noise at the receiver output is white
and Gaussian with zero mean and variance 02 = Ng/2. The probability density function of
the receiver output. r, conditioned on the bit that was transmitted. is:

fo(al0) = —mexp [~y ( - VEL)]

f-(z]1) = \/T_rllvoexp [—%’-(r + \/E)z] (4.2)




The bit-to-symbol mapping cornvention used is the natural “sign-bit™ mapping:

Iol “— + /EC
1M & -\E. (4.3)

The probabilities for the two possible transmitted bits. given the received signal sample z.

are:
fr(IIO)
POIZ) = TR0+ A£G
p(1)z) fo(z]1) (4.4)

f=(2[0) + fz(z]1)

The LLR is calculated from these probability values:

_ p(0{z) -
llr = log <p(—1|z')') (4.5)

where the probability that a zero was transmitted is placed in the numerator (convention).
Substituting for the probability values and simplifying gives:

llr=4£,c- ad

.\"0 ‘/EC

This shows that the log-likelihood ratio for a particular channel bit is calculated by

(4.6)

multiplying the channel sample by the factor 4%7;:7 This conversion requires knowledge
of the received signal power and signal-to-noise ratio. [t will be shown in section 4.3,
however, that for the case of simple parity equations. an approximation can be used in the
log-MAP calculations that makes the MAP operations independent of this initial scaling,

thus eliminating the need for estimates of the channel conditions.

4.2 Extrinsic information

The term “extrinsic information™ refers to the difference between the LLRs of the bits at
the decoder input and the LLRs of the output bits from a soft-input. soft-output decoder.
That is, the “extrinsic information™ is the adjustment made to the LLRs. The next section

describes how the “extrinsic information™ for a simple parity equation can be calculated.
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4.3 The max approximation (max-log-MAP)

A detailed description of “true MAP” calculations will not be presented as part of this
report. since the topic is well covered in the standard literature: for example, see [1]. The
“max” approximation. however. warrants some description since it is an important factor
in making hyper-codes practical to implement. In the log-MAP equations. an expression

that frequently arises is log(e + €¥). This can be approximated as:
log(e® + €¥) ~ max(z.y) (1.7)

When this approximation is substituted into the log-MAP equations for a simple parity
equation, the equations are dramatically simplified. This idea is mentioned in [5]. The
final result is as follows. When the “max approximation™ is substituted into the log-MAP
equations for a simple parity equation. the calculation of the extrinsic information for each

element of the parity equation reduces to:

e The magnitude of the extrinsic information for a particular element is equal to the

minimum magnitude of all of the other elements.

e The sign of the extrinsic information for a particular element is equal to the sign of
the element itself. if the parity of the overall equation is even. and opposite to the

sign of the element. if the overall parity is odd.

That is. each element is “strengihened™ or “weakened™ depending on whether the overall
parity worked or not. and the amount of adjustment is determined by the smallest other
element. The smallest magnitude of the other elements can be considered as something of a
confidence measure in the overall parity result. At this point in the discussion, the scaling
of the extrinsic information is being ignored. This is described later in section 4.6.

The simplicity of these calculations greatly reduces the computational requirements
associated with determining the extrinsic information. as compared to using the “true MAP”
equations. Further, when the “max approximation” is employed. there is no need to scale
the channel samples to come up with log-likelihood ratios. This is because any scaling of
the input samples would have no effect on the output of the decoder: scaling of the input

values simply results in a scaling of all the values throughout the decoding process!. The

'Scaling is still important in time-varying channels, such as fading channels.
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benefit of this is that the decoder no longer requires estimates of the channel signal and
noise power levels. This also means that the error-rate performance of the decoder is not
affected by the accuracy of these channel estimates. Finally. it will be shown later in section
4.5 that using the max-log-MAP approach allows for a significant reduction in the amount
of memory required for storing the extrinsic information.

[nitial investigations did not reveal any error-rate performance degradation associated
with using the “max approximation”. as compared to using the “true MAP” equations in
decoding (provided that the appropriate extrinsic information scale factor was selected: see
section 4.6). For this reason, and because of the many implementation advantages associated
with its use, the max-log-MAP approach was primarily used for further investigations. It
must be emphasized. however. that the error-control coding scheme that has been developed

is in no way dependent on the use of this approximate method.

4.4 The iterative decoding process

In the decoding process. the basic MAP operation is applied to each simple parity equation
in the first set of parity equations. Then. the second set of parity equations is processed,
incorporating the extrinsic information from the first set. After this. the third set of parity
equations is processed, using the extrinsic information from the first and second sets, and
so forth, until all the sets have been processed. At this point. the decoding returns to
the first set and a new cycle begins. Before processing the first set again. however, it
is tmportant that the extrinsic information added in the first cycle be removed before new
extrinsic information is calculated. [t has been observed that if this key step is omitted,
the error-rate performance of the decoder will degrade significantly. This is the reason why
it is necessary to save the extrinsic information from one cycle until the next cycle. The
iterative decoding process continues until a specified number of cycles have been completed,
or until some other stopping criterion is satisfied (for example. further decoding cycles will
not change the final outcome: see section 4.7). The number of decoding cycles that should
be performed depends on numerous factors, including the code structure itself. the operating
signal-to-noise ratio, and the desired error-rate performance.

There are several variations to the basic MAP decoding approach described above.

One aspect that can vary is the order in which the sets of parity equations are processed.

40



Changing the order of processing is generally of no consequence. though in certain situations
a particular order might be advantageous. Another variation is to wait until the end of each
cycle before adding in the extrinsic information. This approach certainly removes any bias
associated with the order in which the sets are processed. When this method was tested,
however, no improvement in the error-rate performance was observed. and convergence was
slightly slower. Also, this method increases the memory requirements of the decoder. Such
an approach could be useful. however. in a multi-processor decoder to help manage shared
memory.

There are two minor implementation optimizations related to the extrinsic information
storage that can be used to save processing. In the first cycle. there is usually no extrinsic
information to subtract off. While this could be accommodated by simply zeroing all ex-
trinsic information before beginning decoding, if the first cycle is treated as a special case,
the subtraction is not required in this cycle. and the extrinsic information does not need to
be zeroed. This saves some processing. Another cycle that can also be treated as a special
case. to save processing. is the last cycle. In this case. there is no need to store the extrinsic
information, since it will never be made use of.

[t is important to recognize that this iterative decoding approach (even with the true
MAP equations on the parity equations) is not equivalent to true maximum-likelihood (ML)
or true MIAP decoding. The advantage of using an iterative approaci. however. is that more
complex code structures can be handled. The ability to use more powerful codes often more
than compensates for the sub-optimality of the decoding process. That is. even though
iterative decoding is not true ML or true MAP. the combination of a more complex code
structure and iterative decoding can provide better error-rate performance than using a
simpler code structure with true ML or MAP decoding.

This iterative decoding approach is not a new development and is discussed in several

papers. A good description is given in [1].

4.5 Reducing the memory requirement for extrinsic informa-
tion storage

When the max-log-MAP approximation is used in decoding, the extrinsic information asso-

ciated with each parity equation can be stored in a compressed form. Rather than storing a
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value for each element of the parity equation. only the two minimum magnitudes are stored,
along with a “sign word™ and a location index. The “sign word™ records the sign bit of
each element of the parity equation. and the index indicates the location of the minimum
magnitude within the parity equation. This information is sufficient to allow subtraction of
the extrinsic information when the parity equation is processed in the next decoding cycle.

This reduction in the amount of memory required to store the extrinsic information is
possible because. when the “max” approximation is employed. the magnitudes of the ex-
trinsic information for all but one of the elements of any given parity equation are the same.
(Recall from section 4.3 that the magnitude of the extrinsic information for a particular
element is equal to the minimum magnitude of all of the other elements. This means that
the element of the parity equation having the smallest magnitude gives the magnitude of
the extrinsic information for all of the other elements in the parity equation.)

Of course. many variations are possible based on this fundamental idea. For example,
instead of storing the two minimum magnitudes. the minimum magnitude and a difference
value could be stored. As another example. in some DSP implementations it is desirable to
pack both the sign information and the location index into a single word. Such variations
are simply different embodiments of the same idea. The specific manner of storage will
depend on what is most convenient for the implementation being developed.

When stored in this compressed form. the space required to store the extrinsic informa-
tion associated with a single parity equation increases only slightly as the parity equation
becomes longer. This means that as the lengths of the parity equations go up, the com-
pression factor becomes greater.

The ability to compress the extrinsic information when using the max-log-MAP approx-
imation is another significant advantage associated with this approximation. The approxi-
mation not only reduces the processing requirements, but also allows significant savings in

the memory required to store the extrinsic information.

4.6 Scaling of the extrinsic information

[t has been found that the error rate performance of the decoder is significantly improved
if the extrinsic information is scaled down before being added to the composite values. In

particular, a scale factor of 0.625 has been used in testing, and gives good performance. The
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specific value of 0.625 was used in testing because multiplication by this number can be re-
alised using two shifts and an add. This property could be useful in implementations where
multiplication by an arbitrary constant is undesirable (e.g. a hardware implementation).
In implementations where there is no penalty associated with multiplication (e.g. a DSP
implementation). the value of the scaling factor can be optimized. taking into consideration
the number of cycles the decoder will perform. The optimal choice of scale factor depends
somewhat on the number of cycles the decoder executes before outputing decisions. Typi-
cally. the more decoding cycles. the smaller the factor should be. and vice versa. This means
that final selection of the scale factor should only be made after the number of decoding
cycles has been decided upon.

Improving performance by scaling the extrinsic information is not unique to max-log-
MAP decoding of simple parity equations. nor even to MAP decoding of simple parity
equations in general. Other researchers have reported similar findings related to various
MAP decoding applications (for example. see [6]). In some cases. the adjustments made to
the extrinsic information are more involved than simple multiplication by a scale factor. In
this application, however, the simplicity of the core decoding process is a kev feature, and
so the minor performance improvements that might be gained by using a more complicated
adjustment approach would probably not justify the extra computational complexity that
an alternate approach would entail. Thus. for this approach. simple multiplication by a scale

factor will usually be the most appropriate choice for adjusting the extrinsic information.

4.7 Convergence tests

A simple test can be implemented that gives a result which. if true. guarantees that the
decoder has converged to a valid codeword. and that further processing is redundant since
it will not affect the final outcome. Note that convergence to a valid codeword dJoes not
necessarily imply convergence to the correct codeword. This test can be used to stop
the decoding before all of the specified cycles are complete, and hence reduce the average
processing requirements associated with the decoding operation.

The test involves checking whether the parity of each equation. with extrinsic informa-
tion removed. is even. and that none of the elements of the equation have changed sign

since the last cycle. If these conditions are satisfied for all parity equations making up the
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codeword. then no further decoding cycles are executed.

The implementation of this test requires negligible extra processing. If significant extra
processing was required. the test would not be worthwhile. since the whole point is to reduce
the amount of processing. As part of the max-log-MAP processing of a simple parity
equation. it is already necessary to determine the parity of the equation. with extrinsic
information removed. and so there is no extra processing associated with this step. Further.
when the extrinsic information is stored in compressed form (see section 4.3). a “sign word”
is assembled which indicates the sign of each element in the parity equation. with extrinsic
information removed. Performing an exclusive-or (XOR) operation between the old and
new sign words gives a result that indicates whether any signs have changed since last time.
If no signs have changed. and the parity works this time. then the parity must have worked
last time. If the parity worked last time, and no signs have changed since last time, then
subtracting the extrinsic information off this time did not flip any signs. This means that
the equation. with extrinsic information included. also had even parity. The conclusion is
that this approach will not affect the final decoding outcome. The implementation of the
test is in fact very simple. At the beginning of a decoding cycle. a global flag is set. During
the max-log-MAP processing of each parity equation. if the parity of the equation (with
extrinsic information removed) was odd. the flag is cleared. Also. if the parity worked but
the XOR result was non-zero. the flag is cleared. At the end of the cycle. if the flag is still
set, then the decoding process is halted.

This approach can be easily extended to allow processing to stop not only at cycle
boundaries, but also after any set of parity equations within a cycle. In addition to the flag
variable, a counter is required that is incremented after each set if the flag is still true. and
zeroed if the flag is clear. In this way. the counter keeps track of how many sequential sets
of parity equations satisfied the test criterion. When the counter reaches the total number
of sets making up the overall structure, then the decoding process can be stopped. In this
approach, the global flag must be set before each set of parity equations. and not only at the
beginning of each cycle. This extension further reduces the average processing requirements
of the decoder.

It is important to realise that the failure of this test does not necessarily indicate that

the decoder has not yet converged to a codeword. Rather, if the test passes, it is guaranteed
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that the decoder has indeed converged. That is, this is a conservative test. Other stopping
criteria could be used that would halt the decoding earlier. while still achieving the same or
only slightly degraded error-rate performance. For example, after every cycle the composite
samples could be tested to determine whether they form a valid codeword. If so. the
decoding process would be stopped. It has not been shown that such a stopping criterion
would never alter the final outcome of the decoding operation. In practice. however. such
an approach would probably cause no significant degradation in error-rate performance, but
would reduce the average processing to a greater extent than the “guaranteed” approach
described earlier.

[t is interesting to observe that if the decoder exits early. the sign words that are part of
the compressed extrinsic information storage can be used as the hard-decision output of the
decoder. Only the sign words associated with one set of parity equations are required, and
the first set of parity equations will probably have the bits in an order that is convenient

for output.



Chapter 5

Different modulation schemes

5.1 Starting LLRs for arbitrary two-dimensional signaling
constellations

Up to this point. the calculation of log-likelihood ratios (LLRs) from channel samples has
only been discussed in relation to binary antipodal signaling (for example. BPSK or QPSK
modulation). In this section. a method will be presented for calculating LLRs from chan-
nel samples for any arbitrary two-dimensional signaling constellation. Having an efficient
means of calculating starting LLRs for more complicated modulation schemes is particularly
important in light of the fact that hyper-codes are well-suited to higher-rate applications.
This is because, with hyper-codes. higher rates are achieved not by puncturing parity bits.
but by simply increasing the lengths of the dimensions. and this preserves the minimum
distance property of the code.

The calculation of LLRs from channel samples essentially amounts to determining, for
each bit in the symbol. the probability that it is a zero. given the received point. To
calculate this exactly involves significant log-likelihood algebra. which is computationally
intensive. However, an approximation has been developed that greatly reduces the associ-
ated computational requirements. The approximation involves finding. for each bit position
within the symbol. the closest constellation point to the received point that has a “0” in
that position. and similarly the closest constellation point to the received point with a “1”
in that position. The difference between the squared distances from the received point to
each of these two constellation points is used as the starting LLR for the bit. There is also
a scale factor involved. which is a function of the signal power and the channel noise power.

If max-log-MAP decoding is being used, however, this scale factor is of no consequence and
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can be ignored.

The necessary operations for each received point amount to the following. The squared
distances to each constellation point are first calculated and recorded. and the shortest
distance is determined. giving the closest point. Then. for each bit position in the symbol.
the next closest constellation point is determined. the search being restricted to points that
are opposite in polarity to the closest point at the bit position being considered. Finally, the
two squared distances are subtracted. and the difference is the LLR estimate for that bit.
The ~direction™ of the subtraction is determined by which point has a =0 in the relevant
bit position: the distance associated with this point is the value that is subtracted. This
convention results in “0” bits being associated with positive LLR values. and =1 bits with
negative values. [t is worthwhile to note that. with this method of calculating LLRs. not
only is the number of required operations small. but also the complexity of the operations
themselves is low. There are no exponentials or square-root operations. only multiplications,
additions. and subtractions.

The intuitive justification for ignoring all but two of the consellation points. for each
bit. is that the two points that are kept would normally dominate the exact log-likelihood

calculations.

5.2 Analysis

A more detailed mathematical analysis will now be presented describing the calculation of
log-likelihood ratios from received channel samples for arbitrary two-dimensional signaling
constellations. Assume that all transmitted symbols are equi-probable. and that both the
x and y signal components are corrupted by independent Gaussian noise having zero mean
and average power 02 = 129- Let (¢;,.¢;,) represent the j** possible transmitted point (i.e.
constellation point), and let (r;,r,) represent the received point. The (exact) LLR for the

i*h bit in the symbol is given by:

Ur; = log (”—0)
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where the summation in the numerator is over all of the constellation points that have a “0”
in the i** bit poisition. and the summation in the denominator is over all of the constellation
points that have a “1” in the i** position. The above formula follows directly from the
definition of a LLR and the fact that the two Gaussian noise sources are independent. The

LLR can also be expressed in vector notation:
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At this point the approximation is applied. The summation in the numerator is approx-

imated by keeping only the largest term. and likewise for the denominator. This gives:

lir; ~ log | =0 — (5.3)

where tg represents the closest constellation point to the received point having a “0” in
the i*® bit position. and #] represents the closest point with a *1” at the i position.
Simplifying,

lr; =~ —\175 “-- 5]2 - |F— tgf] (5.4)

This is precisely the equation described earlier for obtaining the (approximate) LLR from
the channel samples: namely, a difference is taken between two squared distances. Note the
scale factor of Vlo' that was not mentioned earlier. In the case of max-log-MAP decoding,
however. this scale factor is of no consequence.

[t is interesting to re-express the difference of squared distances in an alternate form
in order to compare this method of determining LLRs with the approach described earlier
for binary antipodal signaling; namely, simply using the channel samples themselves. Let
z represent the distance from the midpoint of the line segment joining fy and t; to the
projection of & onto the line passing through tg and ¢;. Further. let z be positive if the
projection of i is closer to tg than t1, and negative if the projection is closer to t; than tg
(that is, r is a “signed distance”). Finally. let h represent the distance from 7 to the line
passing through £ and t;. Then:
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-4

= |——+4z| +A?

i >

lr“-tl

48



5 -4

3~ S | i S (P
2
(5.5)
Subtracting these two equations. simplifving, and multiplying by VLO gives:
L [ =2 . =2 .lt-l.“t-(;’ ;
ﬁ[lr—tll —‘Y’—tol ] = ZTI (0.6)

That is. taking the difference of squared distances is equivalent to determining the distance
between the midpoint of the line segment joining the two constellation points and the
projection of the received point onto this line (times a scale factor). Of course. in practice
one would not calculate the projected point and the distance from it to the mid-point, since
this would involve a lot of extra computation that is completely unnecessary. Recall that
the squared distances are already available since they were required to determine the two
closest constellation points to use. The above derivation is informative. however. in showing
the relationship between the general method of determining LLRs and the earlier method
described for use with antipodal signaling. In fact. finding the starting LLRs for BPSK
and QPSK modulation is simply a special case of the above general method. For BPSK,
taking the difference of the squared distances from the received sample to each of the two
constellation points is equivalent to taking the channel sample itself. within a scale factor.
For QPSK, provided that the bit assignment is made in a Gray-coded manner, the same
reasoning applies.

The above result may lead one to the false conclusion that. for any arbitrary two-
dimensional constellation. finding the starting LLR for a particular bit can be likened to
the antipodal case. with the two symbols chosen from the arbitrary constellation playing
the roles of the two antipodal signaling points. The reason this conclusion is not correct
is that there is a scale factor involved that is dependent on the distance between the two
constellation points being used in the calculations. Thus. it can be misleading to think of
calculating an LLR for a particular bit in an arbitrary constellation in terms of a rotated,
translated antipodal signal.

Another distinction that is worth emphasizing is that taking the difference between the

two squared distances is not necessarily equivalent to finding the distance to a decision
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boundary. Finding the distance to the decision boundary is not the recommended way of
calculating the starting LLRs. even though it might seem like a natural extension from
the antipodal signaling case. An analysis of the decision-boundary approach will not be
presented here. but if this topic is of interest to the reader. a good case to examine is
Gray-coded 16QAM modulation.

In the above discussion. scale factors were routinely ignored. since they have no effect

on max-log-MAP processing. which will normally be used for decoding.

5.3 Performance

In testing, this method of computing the starting LLRs has been found to provide excellent
performance. This is not to say that this approximation will always give a value that is
very close to the exact LLR. but rather that using the approximation causes no significant
degradation in error-rate performance as compared to using the exact LLRs. Because
of its efficiency and effectiveness. this approximation is considered one of the significant

innovations coming out of this development effort.

5.4 Guidelines related to larger constellations

5.4.1 Selection of the constellation size and FEC code rate

The number of bits per symbol of the modulation scheme and the code rate of the FEC
code should be analysed as a pair to find the combination that provides the best overall
error-rate performance. subject to the channel utilization requirements imposed by the
application (i.e. bits/Hz). Better error-rate performance will often be achieved by using
a smaller constellation and a higher-rate code. as opposed to a larger constellation and a
lower-rate code. That is. it can be difficult for an FEC code to make up the energy loss

associated with using a larger signaling constellation.
5.4.2 Arrangement of constellation points, and assignment of bits

The arrangement of the constellation points and the assignment of bit patterns to these
points should be considered together so as to minimize the raw channel bit error rate,
which in turn will minimize the decoded error rate. It is not only the Euclidean distances

between constellation points that impacts the final error-rate performance, but also the
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number of bits that change in going from one point to another. For example. with 16QAM,

the following Gray-coded assignment is a good choice:

1101 1001 1000 1100
0101 0001 0000 0100
0111 0011 0010 0110

1111 1011 1010 1110

Observe that for any constellation point. all of the neighbouring points differ by only one
bit. Using a random bit assignment instead of a pattern like this would cause a significant

degradation in decoded error-rate performance.

5.4.3 Interleaving of bits before grouping into symbols

Certain combinations of symbol constellations and code structures can result in unfavourable
distributions of the less-reliable channel bits within the code structure. If the arrangement
of the iess-reliable symbol bits within the code structure is such that complete or partial low-
distance error patterns can be formed from these less-reliable bits. error-rate performance
will be degraded.

For example, consider Gray-coded 8PSK modulation in combination with an 8x8/9x9
parity square. If the bits are grouped into symbols by simply moving along each row.
taking three bits at a time. all of the least-reliable channel bits will come from only 3
of the 9 columns of the code. This occurs because 3 divides evenly into 9. Since the
minimum-distance error patterns for a parity square are rectangles. there will be many
minimum-distance error patterns that only involve these least-reliable bits. This ordered
arrangement of the least-reliable channel bits will degrade the error-rate performance of the
code.

To avoid such performance degradation, the channel bits should be randomly interleaved
before they are grouped into symbols for transmission. This eliminates any regular relation-
ship between the position of bits within the symbols. and their positions within the overall

code structure.



5.4.4 Grouping of symbol bits into different codes according to reliability

For modulation schemes where the symbol bits are not all equally reliable, an option that
is available when devising an FEC approach is to divide the channel bits into two or more
codes. using more powerful codes for the less-reliable channel bits. and simpler codes for

the more-reliable channel bits.



Chapter 6

Performance results

For all the simulation results presented, a factor of 0.625 was used in scaling the extrinsic
information (see section 4.6). The number of decoding cvcles varied depending on the
code structure being used. but was typically between 8 and 16 cycles. For small block
sizes, good results were often obtained with 8 cycles. Note that the number of cycles used
to decode hyper-codes cannot be compared with the number of cvcles used with other
iterative decoding schemes. such as Turbo codes. since the complexity of a hyper-code cycle

is usually much less than of other schemes.

6.1 BER performance for a representative hyper-code

Figure 6.1 shows the bit error-rate performance of a Tx7x7x7/8x8x8x9 4D plus “roll-parity”
hyper-code. This code has a block size of 2401 information bits. and a rate of r=0.52. The
number of decoding cycles used was 12. Observe that a BER of 1073 is attained at an
Ey/Ng of 1.75 dB.

For comparison purposes. the performance of standard k=7 and k=9 rate=1/2 convo-
lutional codes with soft Viterbi decoding is also indicated on the plot.

[n addition. the performance of a concatenated Viterbi/Reed-Solomon coding scheme is
shown on the figure. The overall block size of the concatenated code is 15.040 information
bits, and the overall rate is r = 0.46 [13]. Observe that the hyper-code. in addition to

providing better performance. is a higher rate code and uses a much smaller block size.
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6.2 BER performance for a higher-rate hyper-code

Figure 6.2 shows the BER performance of a rate r &~ 4/5 hyper-code. as well as the per-
formance of competitive coding schemes with similar blocks sizes and code rates. One of
the comparison codes is a code promoted by a company called Efficient Channel Coding,
Inc. The performance figures were obtained from the web page www.eccincorp.com. The
other comparison coding scheme is “Turbo coding”. Two curves are given for Turbo-code
performance, showing the performance of codes with lower and higher code rates than that
of the hyper-code. It is difficult to match the code rate of the Turbo code exactly to that

of the hyper-code.
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6.3 Performance for a variety of hyper-codes and modulation
schemes

Figures 6.3 through 6.5 summarize the BER performance in Gaussian noise of a wide variety
of hyper-codes. for various modulation schemes. The vertical axis of each plot has the units
“information bits per use”. which indicates the bandwidth efficiency of the combination of
modulation scheme and code structure. For example. a rate=1/2 code used with QPSK
modulation has a bandwidth efficiency of 1 information bit per use.

The figures show only a single point for each hyper-code structure: namely. the E,/Ng
required to achieve a BER of 1073.

On each plot the Shannon capacity limit is also indicated [11], as well as the capacity
limit associated with the modulation scheme being considered [10].

The curve labels indicate the number of dimensions of the parity structure. For example,
the curve label “3D” indicates a three-dimensional cube structure. A *+" suffix on the curve
label indicates the addition of diagonal parity. For block sizes for which diagonal parity
would be less effective, roll-interleaving has been used. with an appropriate roll assignment.
See section 3.6 for a discussion on roll interleaving.

The point labels indicate the lengths of the sides of the parity structure. in information
bits. For example. the point labelled with an -8" along the =3D" curve corresponds to
an 8x8x8/9x9x9 parity cube code with 512 information bits and 729 total bits. The point
labelled with an 8 along the “3D+" curve corresponds to an 8x8x8/9x9x10 parity-cube-

plus-diagonal code with 5312 information bits and 810 total bits.

6.3.1 QPSK modulation

Figure 6.3 includes many points. and so at first may appear somewhat cluttered. It has
been found. however, that having all of this data presented on the same plot facilitates
comparisons between many coding alternatives, and also allows trends to be established.
For these reasons. the plot has not been subdivided into a set of simpler plots.

For comparison purposes. the performance of standard k=7 convolutional encoding
(G1=171. G2=133) is marked on the plot. Results are given for no puncturing (rate=1/2),
as well as puncturing to rates 2/3. 3/4, and 7/8. Soft Viterbi decoding is assumed.

Recall that with QPSK modulation, no more than 2 information bits can be transmitted
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per channel use.

As an example. consider the performance of the 16x16x16/17x17x18 code. labelled as
“16" along the “3D+" curve. This code has a block size of 1096 bits and a code rate of 0.79.
The required E}/Ng is only 2dB from the Shannon capacity limit. and only 1dB from the
capacity limit for this modulation format. It is also about 2.5 dB better than the punctured
k=7 curve at the same code rate.

Note that this code performs almost as well as a "4D” code of block size 164 = 65536
information bits. In general. for three or more dimensions. the “nD+" codes perform very
close to the corresponding “(n+1)D" codes with the same length parity equations. but with

a much smaller block size.

6.3.2 8PSK modulation

Figure 6.4 shows the results for 8PSK. The codes with sides of length 8 information bits
required random interleaving of the channel bits before the channel bits were grouped into
symbols for transmission. This was necessary in order to avoid a performance degradation
associated with the relationship between the placement of the least-reliable channel bits
within the code structure. and the shapes of the low-distance error-patterns of the code
structure. See section 5.4.3 for a discussion on this issue. Without random interleaving,
performance is about 0.5 dB worse.

The bit patterns were assigned to the constellation points in a Gray-coded manner, as
outlined in section 3.4.2.

Recall that with 8PSK modulation. no more than 3 information bits can be transmitted

per channel use.

6.3.3 16QAM modulation

Figure 6.5 shows the results for 16QAM. The bit patterns were assigned to the symbol
points using a Gray code in both signaling dimensions.

Recall that with 16QAM modulation. no more than 4 information bits can be transmit-
ted per channel use.

As an example, the performance of the 16x16x16/17x17x18 code is within 1.1 dB of

channel capacity for this modulation format. This is typically about 2 dB better than

U
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standard trellis coding techniques. with similar complexity [10].
6.4 Decoding complexity

The decoding complexity for hyper-codes is very low. Preliminary DSP implementation
results indicate that the complexity of the *3D+" codes and 4D+~ codes is about the same

as that required for Viterbi decoding of k=7 and k=8 convolutional codes. respectively.
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Chapter 7

Conclusions and suggestions for
further research

This thesis has presented a new family of FEC codes. called “hyper-codes™. These codes offer
powerful error-correcting performance with low decoding complexity. For example, using
QPSK modulation over an AWGN channel. a hyper-code of block size 1096 information bits
and of rate=0.79 achieves a BER of 1073 at an E3/.Vg of 3 dB. This is only 2 dB from the
Shannon capacity limit. and only 1 dB from the capacity limit for QPSK modulation. The
decoding complexity is about the same as that required for a k=7 Viterbi decoder. based
on a DSP implementation.

There are numerous areas related to hyper-codes that could be investigated further. The

following list indicates some of these areas.

e Diagonal interleaving, and more generally, roll interleaving. are effective methods of
shuffle interleaving for a wide variety of block sizes. [n some cases. however, the
best roll interleaver may not achieve the performance of the best shuffle interleaver.
For example. consider a 3-D parity hyper-cube of size 5x3x35 / 6x6x6. Since the
lengths of the sides of this cube are even. the addition of diagonal parity does not
increase the minimum distance beyond the 8 of the original cube. With appropriate
roll interleaving, the minimum distance can be raised to 12, which is a significant
improvement over diagonal parity, but still not as high as the minimum distance of
14 that is attained when diagonal parity is added to a cube having odd-length sides.
This raises the question as to how to shuffle hyper-cubes where roll parity does not

achieve the highest possible minimum distance. Some work has been done in this
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area, especially for the two-dimensional case, but there is certainly more research that

could be done in this area.

Multiple sets of shuffle parity (and should the first layer of extra shuffle parity be

included in the second shuffle interleaver?)

Decoder convergence: Why is the decoder performance so dependent on the scaling
of the extrinsic information? Should a smaller scale factor not simply slow down
decoder convergence? This issue is part of the larger problem of improving the error-

rate performance at high bit error rates (e.g. 1073).

Performance with a final layer consisting of a set of 1-D parity equations. applied after

random interleaving.
Performance with shortening and puncturing.
Performance in fading channels.

More work could be done using larger signaling constellations. and the design of these

signaling constellations.

DSP implementation / FPGA implementation / VLSI implementation.
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Appendix A

Core hyper-code functions

A.1 Header file

#ifndef _HC_H_
#define _HC_H_

void HCencode(
int *SrcAndDstPtr,
const unsigned short *CodeDefnArray);

int HCdecode(

double *InputAndOutputllrs,

double *ExtrinsicArray,

const unsigned short *CodeDefnArray,
unsigned NumCycles,

int& ZeroTheExtrinsicFlag);

void HCsanity(

const unsigned short *CodeDefnArray,
unsigned NumChanBits,

unsigned NumInfoBits,

unsigned NumExtrinsics);

#endif



A.2 “C” code

/*

Hyper-code core routines.
Andrew Hunt 1997

=/

typedef int bit; // LinkSim uses type int for bits.
typedef unsigned short inx; // This should be kept an unsigned type.

#define MAX_LEN 64
#define FIXED_POINT 0

//"“#‘#‘l“‘t““ttt‘tttt‘t‘t‘t3tt#'t#‘“‘t“t‘t#tt‘tt“‘#t“#“ll""t“‘

#if FIXED_POINT

typedef int 1llr;

#define Scale(x) (((x) > 1) + ((x) >> 3))

#error Have you included normalization logic elsewhere?
felse

typedef double llr;

#define Scale(x) ((x) * 0.625)
#endif

#include <assert.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include "hc.h"

static int Map(llr =QutBuf, const llr *InBuf, size_t Len);

static inx Overlap(const inx »Ptrl, inx Lenl, const inx *Ptr2, inx Len2);

//‘tt‘t“#‘t‘.“““t‘#‘3.‘#tttttttt“t‘t‘#“‘t“‘.tt‘tttt‘tttt“tt“t“tt“

void HCencode(

bit *SrcAndDstPtr,

const inx *CodeDefnArray) // Format is described at the end of this file.
{

register bit sDataArray, Parity;
register const inx *DefnPtr, *End;
inx Len;

/e%/

DataArray = SrcAndDstPtr;

DefnPtr = CodeDefnArray;

vhile ((Len=sDefnPtr++) != 0)

{
End = DefnPtr + Len - 1;
Parity = 0;

while(DefnPtr < End)
Parity ~= DataArray[s*DefnPtr++];
DataArray[*DefnPtr++] = Parity;
} /% end while s/
} /* end function s/

//“‘“‘ttttttt‘t““‘ttttttttttttt‘tt"‘tt“‘ttttt‘tttttt‘ttttt‘tttttttttt‘
/*

Hard decisions are not made because the caller may
vant hard decisions for all of the channel bits or for only the
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information bits.

Scaling of the input log-likelihood ratios is unnecessary because
max-log-MAP processing is being used, as long as the scale factor

is the same for all of the samples. In time-varying channels,
however, this will not be the case, and so scaling will be

required. An example of a time-varying channel is a fading

channel. The conversion from an antipodal signal sample to an LLR is
as follows:

11lr = 4s(Ec/NO0)*(1/3qrt(Ec)) = x;

where "x" is the channel sample. This equation assumes that

zero and positive signal samples correspond with "0" bits, and that
negative signal samples correspond with "1" bits. This requirement
arises from the standard definition of a LLR, which is 1n(p(0)/p(1)).
=/

int HCdecode( // Return value indicates convergence.

llr sInputAndOutputllrs, // Observe that there is no const qualifier.

11lr sExtrinsicArray, // Must have length = number of extrinsics.

const inx *CodeDefnArray, // Format is described at the end of this file.
unsigned NumCycles, // Will stop early if converged, but will perform

// at least one cycle if this is non-zero.
int& ZeroTheExtrinsicFlag) // Can use this and specify decoding cycles.
// This flag is cleared if set. (for RWK)
{
static llr InBuf[MAX_LEN];
1llr *L1lrPtr, sL1rEnd;
1llr s=ExtrinsicPtr;

const inx sDefnPtr, *InxEnd;
inx Len;

unsigned Cycle;
int SomeEgnHasOddParity;

/=%/

// Zero the extrinsic, if requested.

if (ZeroTheExtrinsicFlag)

{

LlrPtr = ExtrinsicArray;

DefnPtr = CodeDefnArray;

vhile ((Len=*DefnPtr++) !'= 0)

{

assert (Len <= MAX_LEN);

L1rEnd = L1rPtr + Len;

while(L1lrPtr < L1lrEnd)
sL1rPtr++ = 0;

DefnPtr += Len;

} /+ end while =/

ZeroTheExtrinsicFlag = 0;

} /% end if =/

// Decode for the specified number of cycles, or until convergence is achieved.
SomeEqnHasOddParity = 1;

for(Cycle=0; SomeEqnHasOddParity &% (Cycle < NumCycles); ++Cycle)

{

SomeEqnHasOddParity = 0;

DefnPtr=CodeDefnArray, ExtrinsicPtr=ExtrinsicArray;
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while ((Len=sDefnPtr++) != Q)
{
InxEnd = DefnPtr + Len;
LlrPtr = InBuf;
while(DefnPtr < InxEnd)

sL1rPtr++ = InputAndOutputLlrs([sDefnPtr++] - sExtrinsicPtr++;
ExtrinsicPtr -= Len;
SomeEqnHas0ddParity = Map(ExtrinsicPtr, InBuf, Len) || SomeEqnHasOddParity;
// DO NOT CHANGE THE ORDER OF THE || OPERANDS IN THE ABOVE LINE!
LlrPtr=InBuf, DefnPtr-=Len;
while(DefnPtr < InxEnd)

InputAndOutputLlrs [sDefnPtr++] = sL1rPtr++ + sExtrinsicPtr++;
} /* end while =/
} /* end for =/

return !SomeEqnHasOddParity; // i.e. true if converged.
} /* end function s/

[/ EEREEREXXX X KA EEERX XXX X EREAXEEAER KX K EXEXEEEXRRE XX SRR EEREEEEEE X RS SRR KX ERKE

/*
Basic checking of the code definition. Call this function whenever
a nev code definition is established.

=/

void HCsanity(

const inx sCodeDefnArray, // Format is described at the end of this file.
unsigned NumChanBits,

unsigned NumInfoBits,

unsigned NumExtrinsics)

{

const inx sDefnPtr, *#InxEnd;

inx Len, Valil;

const inx *DefnPtr2;

inx Len2;

int sScratchArray, *#ScratchPtr, *ScratchEnd;
unsigned Total, OnesCount, ManyCount;

int Defined;

/es/

// Basic argument checking.
assert (NumInfoBits <= NumChanBits);

// Allocate scratch memory (freed later).
ScratchArray = (int s)malloc(NumChanBits * sizeof (int));
if (!ScratchArray)
fprintf (stderr,”ERROR HCsanity(): Unable to allocate memory.\n"), exit(1);
ScratchEnd = ScratchArray + NumChanBits;

// Sum of lengths must equal the number of extrimsics,
// and each length must be greater than 1.
Total = 0;
DefnPtr = CodeDefnArray;
while ((Len=¢DefnPtr++) != 0)
{
assert(Len > 1);
if(Len < 3 || Len > 64)
fprintf (stderr,"WARNING HCsanity(): Suspicious equation length (%u).\n",
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(unsigned int)Len);
Total += Len, DefnPtr += Len;
} /% end while =/
assert (Total == NumExtrinsics):

// All indices must be less than the number of channel bits.
// All indices from O to NumChanBits-1 should be used at least once.
ScratchPtr = ScratchArray;
while (ScratchPtr < ScratchEnd)
sScratchPtr++ = Q;
DefnPtr = CodeDefnArray;
vhile ((Len=¢DefnPtr++) '= 0)
{
InxEnd = DefnPtr + Len;
vhile (DefnPtr < InxEnd)
{
assert (sDefnPtr < NumChanBits);
ScratchArray [sDefnPtr++]++;
} /= end while s/
} /= end while =/
OnesCount = 0, ManyCount = 0;
ScratchPtr = ScratchArray;
vhile (ScratchPtr < ScratchEnd)
{
assert (*ScratchPtr);
if (sScratchPtr == 1)
OnesCount++;
if (#ScratchPtr > 6)
ManyCount++;
ScratchPtr++;
} /+ end while =/
if (OnesCount)
fprintf (stderr,
"WARNING HCsanity(): %u channel bits only involved in one equation.\n",
OnesCount) ;
if (ManyCount)
fprintf (stderr,
"WARNING HCsanity(): %u channel bits involved in more than 6 equations.\n",
ManyCount) ;

// No parity bit should have an index less than the number of info bits.
DefnPtr = CodeDefnArray;
vhile ((Len=*DefnPtr++) != 0)

DefnPtr += Len-1, assert(*DefnPtr++ >= NumInfoBits):

// The ordering of the equations must work for encoding (not only decoding).
ScratchPtr = ScratchArray;
ScratchEnd = ScratchArray + NumInfoBits; // Temporarily.
vhile(ScratchPtr < ScratchEnd)
*ScratchPtr++ = 1;
ScratchEnd = ScratchArray + NumChanBits; // Restore to normal.
vhile (ScratchPtr < ScratchEnd)
sScratchPtr++ = 0;
DefnPtr = CodeDefnArray;
vhile ((Len=¢DefnPtr++) !'= 0)
{
Defined = 1;
InxEnd = DefnPtr + Len - 1;
vhile (DefnPtr < InxEnd)
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if ('ScratchArray[sDefnPtr++])
Defined = 0;
ScratchArray[sDefnPtr++] = Defined;
} /* end vhile */
ScratchPtr = ScratchArray;
vhile(ScratchPtr < ScratchEnd)
assert («ScratchPtr++) ;

// No two parity equations should overlap by more than one bit.
Total = 0;
DefnPtr = CodeDefnArray;
vhile ((Len=+DefnPtr++) !=0 )
{
DefnPtr2 = DefnPtr + Len;
while ((Len2=#DefnPtr2++) != Q)
{
if (Qverlap(DefnPtr,Len, DefnPtr2, Len2) > 1)
Total++;
DefnPtr2 += Len2;
} /+ end while s/
DefnPtr += Len;
} /* end vhile &/
if (Total)
fprintf (stderr,
"WARNING HCsanity(): %u equations overlap by more than 1 bit.\n",
Total);

// An index can only occur once in any given parity equation.
Total = 0;
DefnPtr = CodeDefnArray;
vhile ((Len=*DefnPtr++) != 0)
{
InxEnd = DefnPtr + Len;
vhile (DefnPtr < InxEnd)
{
Vall = #DefnPtr++;
DefnPtr2 = DefnPtr;
while (DefnPtr2 < InxEnd)
if (#DefnPtr2++ == Vall)

Total++;
} /* end while =/
} /+ end while =/
assert(!Total);

// Free memory.
free(ScratchArray);
} /+ end function =/

//‘tt‘tt“““3“33‘t“"‘#tttt‘tt“‘t“‘*t““‘#“#“‘tt‘t‘ttt'#t‘t‘t#t“t‘

/*
The return value indicates the parity of the input equation; non-zero is
odd parity and zero is even parity.

The output LLRs are the extrinsic information, not improved LLRs.
=/

static int Map(
1llr =QutBuf,



const llr sInBuf,

size_t Len)

{

register llr Tmp;

register const 1llr *Ptr, *End;
register llr Min, Min2;
register const llr *Loc;

int Parity;

1llr =Dst;

3%/

assert(Len >= 2); // Otherwise you can’t have two minimums.
End = InBuf + Len;

// Calculate Min, Loc, and Parity.

Ptr = InBuf;
Parity = 0;
if ((Min=+Ptr) < 0)
Min = -Min, Parity = 1;

Loc = Ptr++;
while(Ptr < End)
{
if ((Tmp=#*Ptr) < 0)
Tmp = -Tmp, Parity “= 1;
if (Tmp < Min)
Min = Tmp, Loc = Ptr;
Ptr++;
} /% end vhile s/

// Calculate Min2.
Min2 = Loc==InBuf ? InBuf[1] : sInBuf;
if (Min2 < 0)
Min2 = -Min2;
for (Ptr=InBuf; Ptr < End; ++Ptr)

{

if ((Tmp=#+Ptr) < 0)
Tmp = -Tmp;

if(Tmp < Min2 && Ptr != Loc)
Min2 = Tmp;

} /+ end for s/

// Account for vhether parity worked or not, and scale values.
if (Parity)

Min = -Min, Min2 = -Min2;
Min = Scale(Min), Min2 = Scale(Min2);

// Fill output buffer.
Ptr = InBuf;
Dst = QutBuf;
vhile(Ptr < End)
sDst++ = «Ptr++ >= 0 ? Min : -Min;
OutBuf [Loc-InBuf] = *Loc >= 0 ? Min2 : -Min2;

return Parity;
} /¢ end function */

//“#“t“tt‘“t“l“‘t‘tt‘.tt‘#t#““#‘t#‘t.“““t‘t“#‘tt“t““tt“““‘



static inx Overlap(
const inx =Ptri,
inx Leni,

const inx sPtr2,
inx Len2)

{

const inx =Endl, *End2;
inx Valil;

const inx *Tmp2;
inx Total;

/ex/

Total = 0O;

Endi = Ptrl + Lenil;
End2 = Ptr2 + Len2;
vhile(Ptri < End1l)

{
Vall = sPtri++;
Tmp2 = Ptr2;

vhile(Tmp2 < End2)
if («Tmp2++ == Vall)
Total++;
} /* end while =/
return Total;
} /* end function =/

//‘tl‘tttt‘tttt‘t‘tt‘t‘t‘tt‘“#‘.‘#t‘t‘t#‘t#t‘tttt.t‘tt#‘ttt‘t#‘ttt“t#t*t‘t
/=
Documentation

1 Code definition

The code definition is a mixed array. The first element is the length of
the first parity equation. This is followed by the indices for the

first parity equation (there will be "length" indices). The last index is
the position of the parity bit for the parity equation. The indices begin
at 0, as always in "C". After the first equation, the length of the second
equation is given, followed by the corresponding indices. This is repeated
for all of the parity equations. A length of 0 terminates the array.

1.1 Bit ordering

The information bits must come first, followed by the parity bits. That is,
indices [0,NumInfoBits-1] are information bits, and

indices [NumInfoBits, NumChanBits-1] are parity bits.

1.2 Equation ordering
It is important that the equations are ordered so that they
can be used for encoding, and not only decoding.

1.3 Maximum block size.

The data type used to store the code definition will determine the

maximum block size that can be accommodated. For example, with GNU C++
running on an Intel 386 platform, the "unsigned short" data type occupies

16 bits which means that, if this data type is used for the code definition,
the maximum block size that can be simulated is 65,536 channel bits.
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Appendix B

The Golay code in two dimensions

This appendix presents results for a code that is not a hyper-code. The code was created by
applying the (24,12) extended Golay code in two dimensions, resulting in a (576,144) block
code. This code was investigated early in the course of this research project. The relation
to hyper-codes is that iterative max-log-MAP processing is used for decoding. The results
are of interest in that they show the error-rate performance that can be achieved with a
very short block. in situations where a low code rate is acceptable. Such a coding scheme
could be useful. for example. in a CDMA cellular system where the data blocks must be
short due to delay concerns, and the spread-spectrum modulation makes the low coding
rate acceptable.

Figure B.1 shows the bit and frame error-rate performance for this “2D” Golay code.
The code has a block size of only 144 information bits. a code rate of r=1/4. and a minimum
distance of d,;;» = 64. Note that this minimum distance is equivalent. asymptotically, to a
rate 1/2 code with a minimum distance of 32. This is very high for such a small block size.
The figure shows that at an E3/Ng of only 1.5 dB. the frame error rate is better than 1072,
and the bit error rate is better than 1073,

The decoder written to generate this data made use of the “max” approximation in
implementing the MAP algorithm. This allowed various efficiency improvements to be
incorporated as compared to a straight-forward MAP decoder. While the computational
requirements of such an approach are still somewhat high for present-day VLSI technology,
given the ongoing advances in semiconductor technology, such an approach may soon be-
come quite viable. This implementation was coded entirely in ‘C’. without any assembler

hand coding, yet was able to provide a throughput of better than 125 bps when run on a
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| Es/No | Frame errors | FER | BER |
0.25 dB 2202 3.6e-1 | 7.2e-2
0.50 dB 1329 2.2e-1 | 4.1e-2
0.75dB 2510 1.1e-1 | 2.1e-2
1.00 dB 1088 5.1e-2 | 8.7e-3
1.25 dB 307 1.8e-2 | 3.0e-3
1.50 dB 1107 5.5¢-3 | 8.7Te-4
1.75 dB 653 l.4e-3 | 2.2e-4

Table B.1: Bit and frame error rates for an extended Golay code applied in two dimensions.
decoded using max-log-MAP. Frame size = 144 information bits. rate = 1 /4. decoding cycles
= 5. The table shows the number of frame errors that were counted in order to give an
indication of the statistical validity of the error rates reported. The variation in the number
of frame errors counted is due to the simulations being run on different computers.

desktop PC (200 MHz PentiumPro). Of course. a hardware implementation could provide
a much higher data rate. Also. in applications where the frame size must be small. the data
rate is typically low. as in CDMA cellular systems.

The simulation results for the two-dimensional (extended) Golay code are given in Table

B.1.
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